Рабочая программа по математике для 5–6-х классов к учебнику Мерзляк А.В.

Разделы: Математика

Классы: 5, 6

Ключевые слова: математика, программа, ФГОС, рабочая программа


Пояснительная записка

Рабочая программа по математике для 5-6 классов составлена на основе требований Федерального государственного образовательного стандарта основного общего образования, примерной программы основного общего образования по математике.

Курс разработан в соответствии с учебниками для учащихся 5, 6 классов общеобразовательных учреждений под редакцией коллектива авторов: А.Г.Мерзляк, В.Б.Полонский, М.С.Якир.

Общая характеристика учебного предмета

Содержание математического образования в 5-6 классах представлено в виде следующих содержательных разделов: «Арифметика», «Числовые и буквенные выражения. Уравнения», «Геометрические фигуры. Измерения геометрических величин», «Элементы статистики, вероятности. Комбинаторные задачи», «Математика в историческом развитии».

Содержание раздела «Арифметика» служит базой для дальнейшего изучения учащимися математики и смежных дисциплин, способствует развитию вычислительной культуры и логического мышления, формированию умения пользоваться алгоритмами, а также приобретению практических навыков, необходимых в повседневной жизни. Развитие понятия о числе связано с изучением рациональных чисел: натуральных чисел, обыкновенных и десятичных дробей, положительных и отрицательных чисел.

Содержание раздела «Числовые и буквенные выражения. Уравнения» формирует знания о математическом языке. Существенная роль при этом отводится овладению формальным аппаратом буквенного исчисления. Изучение материала способствует формированию у учащихся математического аппарата решения задач с помощью уравнений.

Содержание раздела «Геометрические фигуры. Измерения геометрических величин» формирует у учащихся понятия геометрических фигур на плоскости и в пространстве, закладывает основы формирования геометрической речи, развивает пространственное воображение и логическое мышление.

Содержание раздела «Элементы статистики, вероятности. Комбинаторные задачи» - обязательный компонент школьного образования, усиливающий его прикладное и практическое значение. Этот материал необходим прежде всего для формирования у учащихся функциональной грамотности, умения воспринимать и критически анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчёты. Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор вариантов, в том числе в простейших прикладных задачах.

Раздел «Математика в историческом развитии» предназначен для формирования представлений о математике как части человеческой культуры, для общего развития школьников, для создания культурно-исторической среды обучения.

Изучение математики в основной школе направлено на достижение следующих целей:

1) в направлении личностного развития

  • развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;
  • формирование у учащихся интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;
  • воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;
  • формирование качеств мышления, необходимых для адаптации в современном информационном обществе;
  • развитие интереса к математическому творчеству и математических способностей;

2) в метапредметном направлении

  • формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;
  • развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;
  • формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности;

3) в предметном направлении

  • овладение математическими знаниями и умениями, необходимыми для продолжения обучения в старшей школе или иных общеобразовательных учреждениях, изучения смежных дисциплин, применения в повседневной жизни;
  • создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности.

Дополнительно в рабочей программе обозначаются следующие цели: развитие личности школьника средствами математики, подготовка его к продолжению обучения и к самореализации в современном обществе.

Достижение перечисленных целей предполагает решение следующих задач:

  • формирование мотивации изучения математики, готовности и способности учащихся к саморазвитию, личностному самоопределению, построению индивидуальной траектории в изучении предмета;
  • формирование у обучающихся способности к организации своей учебной деятельности посредством освоения личностных, познавательных, регулятивных и коммуникативных универсальных учебных действий;
  • формирование специфических для математики стилей мышления, необходимых для полноценного функционирования в современном обществе, в частности логического, алгоритмического и эвристического;
  • освоение в ходе изучения математики специфических видов деятельности, таких как построение математических моделей, выполнение инструментальных вычислений, овладение символическим языком предмета и др.;
  • формирование умений представлять информацию в зависимости от поставленных задач в виде таблицы, схемы, графика, диаграммы, использовать компьютерные программы, Интернет при её обработке;
  • овладение учащимися математическим языком и аппаратом как средством описания и исследования явлений окружающего мира;
  • овладение системой математических знаний, умений и навыков, необходимых для решения задач повседневной жизни, изучения смежных дисциплин и продолжения образования;
  • формирование научного мировоззрения;
  • воспитание отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.

Личностные, метапредметные и предметные результаты освоения содержания курса математики

Изучение математики по данной рабочей программе способствует формированию у учащихся личностных, метапредметных и предметных результатов обучения, соответствующих требованиям Федерального государственного образовательного стандарта основного общего образования.

Личностные результаты:

  • воспитание российской гражданской идентичности: патриотизма, уважения к Отечеству, осознание вклада отечественных учёных в развитие мировой науки;
  • ответственное отношение к учению, готовность и способность обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию;
  • осознанный выбор и построение дальнейшей индивидуальной траектории образования на базе ориентировки в мире профессий и профессиональных предпочтений с учётом устойчивых познавательных интересов, а также на основе формирования уважительного отношения к труду, развитие опыта участия в социально значимом труде;
  • умение контролировать процесс и результат учебной и математической деятельности;
  • критичность мышления, инициатива, находчивость, активность при решении математических задач.

Метапредметные результаты:

  • умение самостоятельно определять цели своего обучения, ставить и формулировать для себя новые задачи в учёбе, развивать мотивы и интересы своей познавательной деятельности;
  • умение соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией;
  • умение определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации;
  • умение устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и делать выводы;
  • развитие компетентности в области использования информационно-коммуникационных технологий;
  • первоначальные представления об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;
  • умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
  • умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме, принимать решение в условиях неполной или избыточной, точной или вероятностной информации;
  • умение понимать и использовать математические средства наглядности (графики, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;
  • умение выдвигать гипотезы при решении задачи, понимать необходимость их проверки;
  • понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом.

Предметные результаты:

  • осознание значения математики в повседневной жизни человека;
  • представление о математической науке как сфере математической деятельности, об этапах её развития, о её значимости для развития цивилизации;
  • развитие умений работать с учебным математическим текстом (анализировать, извлекать необходимую информацию), точно и грамотно выражать свои мысли с применением математической терминологии и символики, проводить классификации, логические обоснования;
  • владение базовым понятийным аппаратом по основным разделам содержания;
  • практически значимые математические умения и навыки, их применение к решению математических и нематематических задач, предполагающее умения:
  • выполнять вычисления с натуральными числами, обыкновенными и десятичными дробями, положительными и отрицательными числами;
  • решать текстовые задачи арифметическим способом и с помощью составления и решения уравнений;
  • изображать фигуры на плоскости;
  • использовать геометрический язык для описания предметов окружающего мира;
  • измерять длины отрезков, величины углов, вычислять площади и объёмы фигур;
  • распознавать и изображать равные и симметричные фигуры;
  • проводить несложные практические вычисления с процентами, использовать прикидку и оценку; выполнять необходимые измерения;
  • использовать буквенную символику для записи общих утверждений, формул, выражений, уравнений;
  • строить на координатной плоскости точки по заданным координатам, определять координаты точек;
  • читать и использовать информацию, представленную в виде таблицы, диаграммы (столбчатой или круговой), в графическом виде;
  • решать простейшие комбинаторные задачи перебором возможных вариантов.

Ценностные ориентиры содержания учебного предмета

Курс математики 5-6 классов является фундаментом для математического образования и развития школьников, доминирующей функцией при его изучении в этом возрасте является интеллектуальное развитие учащихся. Курс построен на взвешенном соотношении новых и ранееусвоенных знаний, обязательных и дополнительных тем для изучения, а также учитывает возрастные и индивидуальные особенности усвоения знаний учащимися.

Практическая значимость школьного курса математики 5-6 классов состоит в том, что предметом его изучения являются пространственные формы и количественные отношения реального мира. В современном обществе математическая подготовка необходима каждому человеку, так как математика присутствует во всех сферах человеческой деятельности.

Математика является одним из опорных школьных предметов. Математические знания и умения необходимы для изучения алгебры и геометрии в старших классах, а также для изучения смежных дисциплин.

Одной из основных целей изучения математики является развитие мышления, прежде всего формирование абстрактного мышления. С точки зрения воспитания творческой личности особенно важно, чтобы в структуру мышления учащихся, кроме алгоритмических умений и навыков, которые сформулированы в стандартных правилах, формулах и алгоритмах действий, вошли эвристические приёмы как общего, так и конкретного характера. Эти приёмы, в частности, формируются при поиске решения задач высших уровней сложности. В процессе изучения математики также формируются и такие качества мышления, как сила и гибкость, конструктивность и критичность. Для адаптации в современном информационном обществе важным фактором является формирование математического стиля мышления, включающего в себя индукцию и дедукцию, обобщение и конкретизацию, анализ и синтез, классификацию и систематизацию, абстрагирование и аналогию.

Обучение математике даёт возможность школьникам научиться планировать свою деятельность, критически оценивать её, принимать самостоятельные решения, отстаивать свои взгляды и убеждения.

В процессе изучения математики школьники учатся излагать свои мысли ясно и исчерпывающе, приобретают навыки чёткого и грамотного выполнения математических записей, при этом использование математического языка позволяет развивать у учащихся грамотную устную и письменную речь.

Знакомство с историей развития математики как науки формирует у учащихся представления о математике как части общечеловеческой культуры.

Значительное внимание в изложении теоретического материала курса уделяется его мотивации, раскрытию сути основных понятий, идей, методов. Обучение построено на базе теории развивающего обучения, что достигается особенностями изложения теоретического материала и упражнениями на сравнение, анализ, выделение главного, установление связей, классификацию, обобщение и систематизацию. Особо акцентируются содержательное раскрытие математических понятий, толкование сущности математических методов и области их применения, демонстрация возможностей применения теоретических знаний для решения задач прикладного характера, например решения текстовых задач, денежных и процентных расчётов, умение пользоваться количественной информацией, представленной в различных формах, умение читать графики. Осознание общего, существенного является основной базой для решения упражнений. Важно приводить детальные пояснения к решению типовых упражнений. Этим раскрывается суть метода, подхода, предлагается алгоритм или эвристическая схема решения упражнений определённого типа.

Планируемые результаты обучения математике

Арифметика

По окончании изучения курса учащийся научится:

  • понимать особенности десятичной системы счисления;
  • использовать понятия, связанные с делимостью натуральных чисел;
  • выражать числа в эквивалентных формах, выбирая наиболее подходящую в зависимости от конкретной ситуации;
  • сравнивать и упорядочивать рациональные числа;
  • выполнять вычисления с рациональными числами, сочетая устные и письменные приёмы вычислений, применять калькулятор;
  • использовать понятия и умения, связанные с пропорциональностью величин, процентами, в ходе решения математических задач и задач из смежных предметов, выполнять несложные практические расчёты;
  • анализировать графики зависимостей между величинами (расстояние, время, температура и т.п.).

Учащийся получит возможность:

  • познакомиться с позиционными системами счисления с основаниями, отличными от 10;
  • углубить и развить представления о натуральных числах и свойствах делимости;
  • научиться использовать приёмы, рационализирующие вычисления, приобрести навык контролировать вычисления, выбирая подходящий для ситуации способ.

Числовые и буквенные выражения. Уравнения

По окончании изучения курса учащийся научится:

  • выполнять операции с числовыми выражениями;
  • выполнять преобразования буквенных выражений (раскрытие скобок, приведение подобных слагаемых);
  • решать линейные уравнения, решать текстовые задачи алгебраическим методом.

Учащийся получит возможность:

  • развить представления о буквенных выражениях и их преобразованиях;
  • овладеть специальными приёмами решения уравнений, применять аппарат уравнений для решения как текстовых, так и практических задач.

Геометрические фигуры. Измерение геометрических величин

По окончании изучения курса учащийся научится:

  • распознавать на чертежах, рисунках, моделях и в окружающем мире плоские и пространственные геометрические фигуры и их элементы;
  • строить углы, определять их градусную меру;
  • распознавать и изображать развёртки куба, прямоугольного параллелепипеда, правильной пирамиды, цилиндра и конуса;
  • определять по линейным размерам развёртки фигуры линейные размеры самой фигуры и наоборот;
  • вычислять объём прямоугольного параллелепипеда и куба.

Учащийся получит возможность:

  • научиться вычислять объём пространственных геометрических фигур, составленных из прямоугольных параллелепипедов;
  • углубить и развить представления о пространственных геометрических фигурах;
  • научиться применять понятие развёртки для выполнения практических расчётов.

Элементы статистики, вероятности. Комбинаторные задачи

По окончании изучения курса учащийся научится:

  • использовать простейшие способы представления и анализа статистических данных;
  • решать комбинаторные задачи на нахождение количества объектов или комбинаций.

Учащийся получит возможность:

  • приобрести первоначальный опыт организации сбора данных при проведении опроса общественного мнения, осуществлять их анализ, представлять результаты опроса в виде таблицы, диаграммы;
  • научиться некоторым специальным приёмам решения комбинаторных задач.

Место учебного предмета в учебном плане

Учебный план МБОУ «Поканаевская СШ» отводит на изучение математики в 5 и 6 классах по  5 часов в неделю, итого по 170 часов в год, согласно 34 рабочих недель.

Данная программа предназначена для общеобразовательных классов, изучающих предмет на базовом уровне. Срок реализации программы – два учебных года.

Формы организации учебного процесса

  • индивидуальные;
  • групповые;
  • индивидуально-групповые;
  • фронтальные;
  • внеклассные мероприятия.

На уроках используются такие формы занятий как: практические занятия; тренинг; консультация; исследование; игра.

Формы контроля и оценки

  • текущий (математический диктант, проверочная работа);
  • тематический (самостоятельная работа, контрольная работа);
  • итоговый (контрольная работа): каждый раздел завершается проверочными заданиями, где представлены разнообразные формы контроля и самоконтроля.

Содержание программы

5 класс

№ п/п

Название раздела

Количество часов

1

Вводное повторение учебного материала начальной школы

5

2

Натуральные числа

20

3

Сложение и вычитание натуральных чисел

33

4

Умножение и деление натуральных чисел

37

5

Обыкновенные дроби

18

6

Десятичные дроби

48

7

Повторение и систематизация учебного материала 5 класса

9

 

ИТОГО

170

О внесенных изменениях в рабочую программу:

В авторской программе на изучение математики в 5 классе отводится 175 часов, т.к учебный план МБОУ «Поканаевская СШ» разработан на 34 рабочих недели, в рабочей программе сокращено количество часов до 170 (сокращено 5 часов в главе «Повторение и систематизация учебного материала 5 класса»).

В тематическом планировании из главы «Повторение и систематизация учебного материала 5 класса» 5 часов перенесены в главу «Вводное повторение учебного материала начальной школы».

Календарно-тематическое планирование к рабочей программе. Математика. 5 класс

6 класс

№ п/п

Название раздела

Количество часов

1

Вводное повторение учебного материала 5 класса

5

2

Делимость натуральных чисел

17

3

Обыкновенные дроби

38

4

Отношения и пропорции

28

5

Рациональные числа и действия над ними

70

6

Повторение и систематизация учебного материала 6 класса

12

 

ИТОГО

170

О внесенных изменениях в рабочую программу:

В авторской программе на изучение математики в 6 классе отводится 175 часов, т.к учебный план МБОУ «Поканаевская СШ» разработан на 34 рабочих недели, в рабочей программе сокращено количество часов до 170 (сокращено 5 часов в главе «Повторение и систематизация учебного материала 6 класса»).
В тематическом планировании из главы «Повторение и систематизация учебного материала 6 класса» 5 часов перенесены в главу «Вводное повторение учебного материала 5 класса».

С точки зрения психологии уроки, посвящённые повторению изученного материала в начале учебного года, являются чрезвычайно важными. Потенциал повторения важен не только с точки зрения припоминания знаний, умений и навыков предыдущих учебных периодов. Введение учащихся в учебно-воспитательный процесс должно быть постепенным, мотивированным и логическим. После продолжительных летних каникул школьникам нужно пройти определённый адаптационный период вхождения в обучение. Именно таким периодом и могут стать уроки повторения. Такие уроки задают темп и настроение будущего взаимодействия учителя с учащимися.

Календарно-тематическое планирование к рабочей программе. Математика. 6 клас

 

Учебно-методическое и материально-техническое обеспечение учебного процесса

Учебно-методический комплект

  1. Математика : 5 класс : учебник для учащихся общеобразовательных учреждений / А. Г. Мерзляк, В. Б. Полонский, М. С. Якир. – М. : Вентана-Граф, 2018;
  2. Математика : 5 класс : дидактические материалы : пособие для учащихся общеобразовательных учреждений / А. Г. Мерзляк, В. Б. Полонский, Е. М. Рабинович, М. С. Якир. – М. : Вентана-Граф, 2018;
  3. Математика : 5 класс : рабочие тетради № 1, 2 / А. Г. Мерзляк, В. Б. Полонский, М. С. Якир. – М. : Вентана-Граф, 2017;
  4. Математика : 5 класс : методическое пособие / Е. В. Буцко, А. Г. Мерзляк, В. Б. Полонский, М. С. Якир. – М. : Вентана-Граф, 2016.
  5. Математика : 6 класс : учебник для учащихся общеобразовательных учреждений / А. Г. Мерзляк, В. Б. Полонский, М. С. Якир. – М. : Вентана-Граф, 2018;
  6. Математика : 6 класс : дидактические материалы : пособие для учащихся общеобразовательных учреждений / А. Г. Мерзляк, В. Б. Полонский, Е. М. Рабинович, М. С. Якир. – М. : Вентана-Граф, 2018;
  7. Математика : 6 класс : рабочие тетради № 1, 2 / А. Г. Мерзляк, В. Б. Полонский, М. С. Якир. – М. : Вентана-Граф, 2017;
  8. Математика : 6 класс : методическое пособие / Е. В. Буцко, А. Г. Мерзляк, В. Б. Полонский, М. С. Якир. – М. : Вентана-Граф, 2016.

Печатные пособия

  • Таблицы по математике;
  • Портреты выдающихся деятелей в области математики.

Информационные средства

  • Коллекция медиаресурсов, электронные базы данных;
  • Интернет.

Технические средства

  • Компьютер;
  • Мультимедиапроектор;
  • Экран (на штативе или навесной);
  • Интерактивная доска.

Учебно-практическое и учебно-лабораторное оборудование

  • Доска магнитная с координатной сеткой;
  • Наборы «Части целого на круге», «Простые дроби»;
  • Наборы геометрических тел;
  • Комплект чертёжных инструментов: линейка, транспортир, угольник (30°, 60°), угольник (45°, 45°), циркуль.