Линейные уравнения с параметрами и уравнения, приводимые к линейным
I введение
Тема “Решение и исследование уравнений с параметрами” присутствует в материалах Единого государственного экзамена. Не все выпускники справляются с задачей, которую в школе “не проходили”. Данная тема является одной из самых трудных в курсе алгебры. Задачи с параметрами рассматривают в школьном курсе пока крайне редко, бессистемно, поэтому при решении таких задач у учеников обычно возникают затруднения. Совершенно очевидно, что к “встрече” с такими задачами надо специально готовиться.
Данные задачи играют значительную роль в формировании логического мышления и математической культуры школьников, позволяют проверить первоначальные навыки исследовательской деятельности. Учащиеся, владеющие методами решения задач с параметрами, успешно справляются с другими задачами.
Известны различные типы уравнений и неравенств с параметрами: дробно-рациональные, иррациональные, тригонометрические, показательные, логарифмические, степенные. Чаще всего они сводятся к следующим четырём основным видам:
- линейные уравнения с параметром,
- линейные неравенства с параметром,
- квадратичные уравнения с параметром,
- квадратичные неравенства с параметром.
Рассмотрим уравнение ![]()
Пусть
, тогда уравнение примет вид ![]()
Решим его:
Пусть
, тогда уравнение примет вид
, решением которого является любое действительное
значение
.
Пусть
, тогда уравнение примет вид
. Решив его, получим, что
. В этом случае
уравнение не имеет решения.
Следовательно, сам факт существования решения зависит от
значения параметра
.
Определение. Исследовать и решить уравнение с параметром
это
значит :
- найти все системы значений параметров, при которых данное уравнение имеет решение;
- найти все решения для каждой найденной системы значений параметров, т.е. для неизвестного и параметра должны быть указаны свои области допустимых значений.
II Простейшие линейные уравнения с параметром
1. ![]()
Ответ:
при
корней нет,
при
2. ![]()
Ответ:
при
корней нет,
при
3. ![]()
![]()
![]()
Ответ:
при
корней нет,
при
![]()
.
4. ![]()
![]()
![]()
Ответ:
при
корней нет,
при
![]()
.
5. ![]()
![]()
![]()
Ответ:
при
при
6. ![]()
![]()
![]()
Ответ:
при
при
7. ![]()
![]()
![]()
Ответ:
при
при
8. ![]()
![]()
![]()
Ответ:
при
при
9. ![]()
![]()
![]()
![]()
![]()
Ответ:
если
, то корней нет
если
,
если
10. ![]()
![]()
![]()
![]()
![]()
1) ![]()
2. ![]()
3. ![]()
Ответ:
при
, корней нет
если
,
при
Таким образом, при решении линейных уравнений с параметром
сначала его нужно привести к виду, удобному для исследования
(стандартный канонический вид линейного уравнения с параметром),
выполнив ряд преобразований, потом следует определить контрольные
значения параметра, т.е. те значения, при которых коэффициент при
обращается в ноль. Эти значения разбивают множество
значений параметра на несколько множеств, которые необходимо
исследовать.
III Линейные уравнения с параметром, имеющие стандартный канонический вид
–
стандартный канонический вид линейного уравнения с параметром
Примеры:
1) ![]()
![]()
![]()
![]()
![]()
![]()
![]()
Ответ:
если
если
2) ![]()
![]()
![]()
![]()
![]()
Ответ:
при
при
при
3) ![]()
![]()
![]()
![]()
![]()
![]()

Ответ:
при
при
при
IV. Уравнения, приводимые к линейным уравнениям с параметром
Схема решения уравнений, приводимых к линейным :
- Указать и исключить все значения параметра и переменной, при которых уравнение теряет смысл
- Умножить обе части уравнения на общий знаменатель, не равный нулю
- Привести уравнение-следствие к виду
и решить
его - Исключить значения параметра, когда найденный корень принимает значения, при которых уравнение теряет смысл
- Записать ответ
1.Примеры решений уравнений, содержащих параметр в знаменателе:
1) ![]()
![]()
![]()
Умножим уравнение на
:
![]()
![]()
![]()
![]()
![]()
Ответ:
при
при
при
2) ![]()
![]()
Умножим уравнение на
:
![]()
![]()
![]()
![]()
![]()
![]()
Ответ:
при
при
при
2. Примеры решений уравнений, содержащих и параметр и переменную в знаменателе
![]()
![]()
Умножим уравнение на
:
![]()
![]()
![]()
![]()
![]()
Исключим те a, при которых
:
![]()
![]()
![]()
![]()
Ответ:
при
при
при


