Урок-семинар по теории вероятностей в 11-м классе

Разделы: Математика


Цели.

  • Организация повторения основных теоретических фактов.
  • Отработка наиболее распространённых приёмов решения задач по теории вероятностей.
  • Развитие познавательного интереса учащихся, умение работать с дополнительной литературой.
  • Воспитание ответственности и самостоятельности при подготовке к семинару.

Задачи урока.

Образовательные:

  • Проверка умений учащихся решать задачи по теории вероятностей.
  • Моделирование реальных ситуаций на языке алгебры.
  • Исследование построенных моделей с использованием аппарата алгебры.
  • Формирование умений устанавливать отношения между предметами с
  • помощью прикладных программ.
  • Применение полученных знаний на практике.

Развивающие:

  • Развитие логического мышления, умения делать выводы.
  • Развитие умения применять информационные технологии для оформления работ и решения задач с современными требованиями.

Воспитательные:

  • Воспитание информационной культуры.
  • Стимулирование познавательной деятельности постановкой проблемных вопросов и заданий.
  • Воспитание умения работать в группе.

Планируемые результаты.

Знать:

формулы по теории вероятности, используемые при решении задач.

Уметь:

строить и исследовать простейшие математические модели;

решать задачи по теории вероятностей.

Тип урока: урок-семинар по стереометрии для учащихся 11 классов (2 часа).

Комплексно-методическое обеспечение: компьютер, таблицы с формулами, плакаты с высказываниями, выставка книг.

Методы обучения.

  • Объяснительно-иллюстративный.
  • Репродуктивный.
  • Частично-поисковый.
  • Проблемный.

План проведения урока-семинара.

  1. Вступительное слово учителя математики.
  2. Выступление учащихся от каждой группы.
  3. Самостоятельная работа.
  4. Подведение итогов урока-семинара.

Организация урока-семинара.

Класс разбивается на 6 групп. Каждая группа получает задание разобрать и решить определённую группу задач по теории вероятностей. Учащиеся при подготовке к семинару прорабатывает соответствующие разделы учебников, использует интернет, дополнительную литературу, получает консультацию учителя математики. На подготовку к уроку отводится неделя.

Ход урока

1. Организационный момент

Учителем сообщается тема урока, цель его проведения.

Эпиграфом к сегодняшнему уроку послужат следующие слова: “Образование есть то, что остаётся у человека, когда остальное забывается”.

2. Систематизация знаний

Вступительное слово учителя:

Задания по теории вероятности включены в экзаменационные работы по математике недавно. В содержание среднего образования России вносятся существенные изменения, в частности, в программу по математике основной школы включаются теория вероятностей и элементы статистики. Теория вероятностей – это математическая наука о случайном и закономерностях случайного. Окружающий нас мир полон случайностей. Это землетрясения, ураганы, подъёмы и спады экономического развития, войны, болезни, случайные встречи и так далее. Теория вероятностей в средней школе – это признание обществом необходимости формирования современного мировоззрения, для которого одинаково важны представления и о жёстких связях, и о случайном. Без знания понятий и методов теории вероятностей и статистики невозможна организация эффективного конкурентоспособного производства, внедрение новых лекарств и методов лечения в медицине, обеспечение страховой защиты граждан от непредвиденных обстоятельств, проведение обоснованной социальной политики. Научиться решать задачи – одна из важнейших целей образования. Овладеть математическими знаниями, позволяющими описывать окружающий нас мир, научиться составлять, анализировать и интерпретировать соответствующие математические модели – наиважнейшая цель математического образования. Помочь хотя бы немного в этом нелёгком труде и призван наш сегодняшний урок.

Представитель каждой группы рассказывает остальным учащимся о задачах, над которыми работала его группа. Выступление учителя и учащихся сопровождается демонстрацией соответствующего материала на компьютере.

1 группа

  1. В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что в сумме выпадет 8 очков. Результат округлите до сотых.
  2. Вася, Петя, Коля и Лёша бросили жребий — кому начинать игру. Найдите вероятность того, что начинать игру должен будет Петя.
  3. В чемпионате мира участвуют 16 команд. С помощью жребия их нужно разделить на четыре группы по четыре команды в каждой. В ящике вперемешку лежат карточки с номерами групп: 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4. Капитаны команд тянут по одной карточке. Какова вероятность того, что команда России окажется во второй группе?
  4. На клавиатуре телефона 10 цифр, от 0 до 9. Какова вероятность того, что случайно нажатая цифра будет чётной?
  5. Какова вероятность того, что случайно выбранное натуральное число от 10 до 19 делится на три?

2 группа

  1. В среднем из 1000 садовых насосов, поступивших в продажу, 5 подтекают. Найдите вероятность того, что один случайно выбранный для контроля насос не подтекает.
  2. Фабрика выпускает сумки. В среднем на 100 качественных сумок приходится восемь сумок со скрытыми дефектами. Найдите вероятность того, что купленная сумка окажется качественной. Результат округлите до сотых.
  3. Научная конференция проводится в 5 дней. Всего запланировано 75 докладов — первые три дня по 17 докладов, остальные распределены поровну между четвертым и пятым днями. Порядок докладов определяется жеребьёвкой. Какова вероятность, что доклад профессора М. окажется запланированным на последний день конференции?
  4. В сборнике билетов по биологии всего 55 билетов, в 11 из них встречается вопрос по ботанике. Найдите вероятность того, что в случайно выбранном на экзамене билете школьнику достанется вопрос по ботанике.
  5. На борту самолёта 12 мест рядом с запасными выходами и 18 мест за перегородками, разделяющими салоны. Остальные места неудобны для пассажира высокого роста. Пассажир В. высокого роста. Найдите вероятность того, что на регистрации при случайном выборе места пассажиру В. достанется удобное место, если всего в самолёте 300 мест.
  6. На олимпиаде в вузе участников рассаживают по трём аудиториям. В первых двух по 120 человек, оставшихся проводят в запасную аудиторию в другом корпусе. При подсчёте выяснилось, что всего было 250 участников. Найдите вероятность того, что случайно выбранный участник писал олимпиаду в запасной аудитории

3 группа

  1. В чемпионате по гимнастике участвуют 20 спортсменок: 8 из России, 7 из США, остальные — из Китая. Порядок, в котором выступают гимнастки, определяется жребием. Найдите вероятность того, что спортсменка, выступающая первой, окажется из Китая.
  2. В соревнованиях по толканию ядра участвуют 4 спортсмена из Финляндии, 7 спортсменов из Дании, 9 спортсменов из Швеции и 5 — из Норвегии. Порядок, в котором выступают спортсмены, определяется жребием. Найдите вероятность того, что спортсмен, выступающий последним, окажется из Швеции.
  3. На семинар приехали 3 ученых из Норвегии, 3 из России и 4 из Испании. Порядок докладов определяется жеребьёвкой. Найдите вероятность того, что восьмым окажется доклад ученого из России.

4 группа

  1. Вероятность того, что на тесте по биологии учащийся О. верно решит больше 11 задач, равна 0,67. Вероятность того, что О. верно решит больше 10 задач, равна 0.74. Найти вероятность того, что О. верно решит ровно 11 задач.
  2. Из районного центра в деревню ежедневно ходит автобус. Вероятность того, что в понедельник в автобусе окажется меньше 20 пассажиров, равна 0,94. Вероятость того, что окажется меньше 15 пассажиров, равна 0,56. Найдите вероятность того, что число пассажиров будет от 15 до 19.
  3. Вероятность того, что новый электрический чайник прослужит больше года, равна 0,97. Вероятность того, что он прослужит больше двух лет, равна 0,89. Найдите вероятность того, что он прослужит меньше двух лет, но больше года

5 группа

  1. На экзамене по геометрии школьнику достаётся один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос на тему “Вписанная окружность”, равна 0,2. Вероятность того, что это вопрос на тему “Параллелограмм”, равна 0,15. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.
  2. Биатлонист пять раз стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна 0,8. Найдите вероятность того, что биатлонист первые три раза попал в мишени, а последние два промахнулся. Результат округлите до сотых.
  3. Помещение освещается фонарём с двумя лампами. Вероятность перегорания одной лампы в течение года равна 0,3. Найдите вероятность того, что в течение года хотя бы одна лампа не перегорит.
  4. При изготовлении подшипников диаметром 67 мм вероятность того, что диаметр будет отличаться от заданного меньше, чем на 0,01 мм, равна 0,965. Найдите вероятность того, что случайный подшипник будет иметь диаметр меньше чем 66,99 мм или больше чем 67,01 мм.
  5. В магазине три продавца. Каждый из них занят с клиентом с вероятностью 0,3. Найдите вероятность того, что в случайный момент времени все три продавца заняты одновременно (считайте, что клиенты заходят независимо друг от друга).
  6. Перед началом волейбольного матча капитаны команд тянут честный жребий, чтобы определить, какая из команд начнёт игру с мячом. Команда “Статор” по очереди играет с командами “Ротор”, “Мотор” и “Стартер”. Найдите вероятность того, что “Статор” будет начинать только первую и последнюю игры.
  7. Вероятность того, что батрейка бракованная, равна 0,06. Покупатель в магазине выбирает случайную упаковку, в которой две таких батарейки. Найдите вероятность того, что обе батарейки окажутся исправными.

6 группа

  1. Две фабрики выпускают одинаковые стекла для автомобильных фар. Первая фабрика выпускает 45% этих стекол, вторая –– 55%. Первая фабрика выпускает 3% бракованных стекол, а вторая –– 1%. Найдите вероятность того, что случайно купленное в магазине стекло окажется бракованным.
  2. Ковбой Джон попадает в муху на стене с вероятностью 0,9, если стреляет из пристрелянного револьвера. Если Джон стреляет из непристрелянного револьвера, то он попадает в муху с вероятностью 0,2. На столе лежит 10 револьверов, из них только 4 пристрелянные. Ковбой Джон видит на стене муху, наудачу хватает первый попавшийся револьвер и стреляет в муху. Найдите вероятность того, что Джон промахнётся.
  3. Автоматическая линия изготавливает батарейки. Вероятность того, что готовая батарейка неиспрвна, равна 0,02. Перед упаковкой каждая батарейка проходит систему контроля. Вероятность того, что система забракует неисправную батарейку, равна 0,99. Вероятность того, что система по ошибке забракует исправную батарейку, равна 0,01. Найдите вероятность того, что случайно выбранная из упаковки батарейка будет забракована

Самостоятельная работа

1 вариант

  1. В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орел выпадет ровно один раз.
  2. Конкурс исполнителей проводится в 5 дней. Всего заявлено 80 выступлений — по одному от каждой страны. В первый день 8 выступлений, остальные распределены поровну между оставшимися днями. Порядок выступлений определяется жеребьёвкой. Какова вероятность, что выступление представителя России состоится в третий день конкурса?
  3. В торговом центре два одинаковых автомата продают кофе. Вероятность того, что к концу дня в автомате закончится кофе, равна 0,3. Вероятность того, что кофе закончится в обоих автоматах, равна 0,12. Найдите вероятность того, что к концу дня кофе останется в обоих автоматах.

2 вариант

  1. В кармане у Миши было четыре конфеты — “Грильяж”, “Белочка”, “Коровка” и “Ласточка”, а так же ключи от квартиры. Вынимая ключи, Миша случайно выронил из кармана одну конфету. Найдите вероятность того, что потерялась конфета “Грильяж”.
  2. В сборнике билетов по математике всего 25 билетов, в 10 из них встречается вопрос по неравенствам. Найдите вероятность того, что в случайно выбранном на экзамене билете школьнику не достанется вопроса по неравенствам
  3. В магазине стоят два платёжных автомата. Каждый из них может быть неисправен с вероятностью 0,05 независимо от другого автомата. Найдите вероятность того, что хотя бы один автомат исправен.

Тетради учащихся собираются для последующей проверки учителем, и результаты анализируются на следующем уроке.

4. Итог урока

Учитель: “Дорогие ребята! Наш семинар подходит к концу, мы благодарим всех выступавших перед нами. А я еще раз хочу обратить ваше внимание на тему нашего семинара “Решение задач по теории вероятностей”. Таким задачам много внимания уделяется в экзаменационных заданиях и решение этих задач вызывает ряд затруднений, поэтому мы, сегодня уделили внимание именно заданиям такого вида”.

а) Проанализировать вместе с учащимися работу групп, указать ошибки, недочёты, отметить положительные моменты.

б) Повторить формулы по теории вероятностей, используемые в предложенных задачах.

в) Выставить отметки за работу на уроке.

5. Домашнее задание.

Учащимся даётся задание найти в интернете в открытом банке заданий другие виды задач по теории вероятностей и на последующих уроках рассмотреть их решение.