Координатно-векторный метод решения стереометрических задач при подготовке к ЕГЭ

Разделы: Математика


Цели:

  • выработать умение рассматривать различные подходы к решению задач и проанализировать “эффект” от применения этих способов решения;
  • выработать умение учащегося выбирать метод решения задачи в соответствии со своими математическими предпочтениями, базирующимися на более прочных знаниях и уверенных навыка;
  • выработать умение составить план последовательных этапов для достижения результата;
  • выработать умение обосновать все предпринимаемые шаги и вычисления;
  • повторить и закрепить различные темы и вопросы стереометрии и планиметрии, типовые стереометрические конструкции, связанные с решением текущих задач;
  • развить пространственное мышление.

Задачи:

  • анализ различных методов решения задачи: координатно-векторный метод, применение теоремы косинусов, применение теоремы о трех перпендикулярах;
  • сравнение преимуществ и недостатков каждого метода;
  • повторение свойств куба, треугольной призмы, правильного шестигранника;
  • подготовка к сдаче ЕГЭ;
  • развитие самостоятельности при принятии решения.

Схема урока

Задача 1.

В кубе ABCDA1B1C1D1 с ребром 1 точка О – центр грани ABCD.

Найти:

а) угол между прямыми A1D и BO;

б) расстояние от точки B до середины отрезка A1D.

Решение пункта а).

1 способ. Координатно-векторный метод

Поместим наш куб в прямоугольную систему координат как показано на рисунке, вершины A1 (1; 0; 1), D (1; 1; 0), B1 (0; 0; 1), O (½; ½; 0).

Направляющие векторы прямых A1D и B1O:

{0; 1; -1} и {½; ½; -1};

искомый угол φ между ними находим по формуле:

cos∠φ = ,
откуда∠φ = 30°.

2 способ. Используем теорему косинусов.

1) Проведем прямую В1С параллельно прямой A1D. Угол CB1O будет искомым.

2) Из прямоугольного треугольника BB1O по теореме Пифагора:

B1O = .

3) По теореме косинусов из треугольника CB1O вычисляем угол CB1O:

cos CB1O = , искомый угол составляет 30°.

Замечание. При решении задачи 2-м способом можно заметить, что по теореме о трех перпендикулярах COB= 90°, поэтому из прямоугольного ∆ CB1O также легко вычислить косинус искомого угла.

 Решение пункта б).

1 способ. Воспользуемся формулой расстояния между двумя точками

Пусть точка E – середина A1D, тогда координаты E (1; 1/2; ½), B (0; 0; 0).

BE = .

2 способ. По теореме Пифагора

Из прямоугольного ∆ BAE с прямым BAE находим BE = .

Задача 2.

В правильной треугольной призме ABCA1B1C1 все ребра равны a. Найти угол между прямыми AB и A1C.

Решение.

1 способ. Координатно-векторный метод

Координаты вершин призмы в прямоугольной системе при расположении призмы, как на рисунке: A (0; 0; 0), B (a; ; 0), A1(0; 0; a), C (0; a; 0).

Направляющие векторы прямых A1C и AB:

{0; a; -a} и {a; ; 0} ;

cos φ = ;

φ = arccos .

2 способ. Используем теорему косинусов

Рассматриваем ∆ A1B1C, в котором A1B1 || AB. Имеем

 cos φ = .

Задача 3.

(Из сборника ЕГЭ-2012. Математика: типовые экзаменационные варианты под ред. А.Л.Семенова, И.В.Ященко)

В правильной шестиугольной призме ABCDEFA1B1C1D1E1F1, все рёбра которой равны 1, найдите расстояние от точки E до прямой B1C1.

Решение

1 способ. Координатно-векторный метод

1) Поместим призму в прямоугольную систему координат, расположив координатные оси, как показано на рисунке. СС1, СВ и СЕ попарно перпендикулярны, поэтому можно направить вдоль них координатные оси. Получаем координаты:

С1 (0; 0; 1), Е (; 0; 0), В1 (0;1;1).

2) Найдем координаты направляющих векторов для прямых С1В1 и С1Е:

(0;1;0), (;0;-1).

3) Найдем косинус угла между С1В1 и С1Е, используя скалярное произведение векторов и :

 cos β = = 0 => β = 90° => C1E – искомое расстояние.

4) С1Е = = 2.

Вывод: знание различных подходов к решению стереометрических задач позволяет выбрать предпочтительный для любого учащегося способ, т.е. тот, которым ученик владеет уверенно, помогает избежать ошибок, приводит к успешному решению задачи и получению хорошего балла на экзамене. Координатный метод имеет преимущество перед другими способами тем, что требует меньше стереометрических соображений и видения, а основывается на применении формул, у которых много планиметрических и алгебраических аналогий, более привычных для учащихся.

Форма проведения урока – сочетание объяснения учителя с фронтальной коллективной работой учащихся.

На экране с помощью видеопроектора демонстрируются рассматриваемые многогранники, что позволяет сравнивать различные способы решения.

Домашнее задание: решить задачу 3 другим способом, например, с помощью теоремы о трех перпендикулярах.

Литература

1. Ершова А.П., Голобородько В.В. Самостоятельные и контрольные работы по геометрии для 11 класса.– М.: ИЛЕКСА, – 2010. – 208 с.

2. Геометрия, 10-11: учебник для общеобразовательных учреждений: базовый и профильный уровни / Л.С.Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. – М.: Просвещение, 2007. – 256 с.

3. ЕГЭ-2012. Математика: типовые экзаменационные варианты: 10 вариантов/ под ред. А.Л.Семенова, И.В.Ященко. – М.: Национальное образование, 2011. – 112 с. – (ЕГЭ-2012. ФИПИ – школе).