Числовые выражения. 7-й класс

Разделы: Математика, Конкурс «Презентация к уроку»

Класс: 7


Презентация к уроку

Загрузить презентацию (4 МБ)


Цели урока:

  1. Повторить и углубить умение учащихся находить значения числовых выражений, составленных из рациональных чисел с помощью знаков сложения, вычитания, умножения и деления;
  2. Учащиеся должны знать, что выражение, содержащее действие деление на нуль, не имеет смысла.
  3. Развить познавательный интерес учащихся к изучению нового предмета.
  4. Развить мышление, память, речь, совершенствовать вычислительные навыки учащихся, умение работать в оптимальном темпе.

Оборудование: ПК, мультимедийная установка; карточки с домашнем заданием (Приложение 1)

Тип урока: урок повторения и обобщения знаний полученных в курсе математики 5-6 классов.

Формы работы: фронтальная, коллективная, самостоятельная работа.

Ход урока

1. Организационный момент (2-4 минуты)

Поздравить учащихся с началом нового учебного года.

***
И снова в позолоте тополя,
А школа – как корабль у причала,
Где ждут учеников учителя,
Чтоб новой жизни положить начало.

***
Пусть счастье в дверь твою стучит,
Открой ее скорей пошире.
Путь жизни тайною покрыт,
Но так прекрасно в этом мире!
И пусть всегда – в окошке свет,
Улыбка мамина – с порога.
Пусть будет много добрых лет
И в жизни легкая дорога!

***
Осенние мотивы
Эта шикарная женщина ОСЕНЬ
Себя подарила беспутному ветру,
И что он ни скажет, и что ни попросит,
Ему отдавала, не чувствуя меры.
Листвы разноцветной большие охапки
Бросала к ногам его брачным букетом,
И буйные краски, и солнца остатки,
И слезы дождей, и туман пред рассветом.
А ветер беспутный шаталец по свету,
Любя самого лишь себя, свою прихоть,
И даже шикарную женщину эту
Старался как можно больнее обидеть,
Сорвать с нее платье нахальным порывом,
Чтоб голая так до зимы простояла…
А ОСЕНЬ прощала, лишь с тихим надрывом
Уже обреченные слезы роняла.
В зимовьих объятьях она умирает,
И проседь теперь в волосах, а не просинь.
Под снежной накидкой никто не узнает
Эту шикарную женщину – ОСЕНЬ.
<Слайд 1>

2. Что изучает алгебра?

У.: Какой предмет мы изучали в прошлом году?

Ученики: Математику.

У.:

Есть о математике молва,
Что она в порядок ум приводит.
Поэтому хорошие слова
Часто говорят о ней в народе.

У.: Чем мы занимались на уроках математики?

Ученики: Проводили вычисления с целыми и дробными числами, решали уравнения, задачи, строили фигуры в координатной плоскости.

<Слайд 2>

У.: Все это составляло содержание предмета «Математика». Этот предмет подразделяется на огромное число самостоятельных дисциплин: алгебра, геометрию, теорию вероятностей, математический анализ, теорию игр и т. д. Мы приступаем к изучению алгебры. Вы уже дома познакомились с учебником. Чем он отличается, например, от учебника литературы?

<Слайд 3>

Ученики: В нем много цифр и букв, причем букв латинских.

У.: Мы с вами помним, что буквы нам помогают записывать свойства действий над числами в удобной для запоминания форме. Говорят: «Высказанное утверждение записано на математическом языке». Например, переместительное свойство умножения: от перестановки множителей произведение не меняется (a · b = b · a ). Вспомните, как найти расстояние, зная время и скорость.

<Слайд 4>

Ученики: Чтобы найти расстояние, надо время умножить на скорость.

У.: Записываем это короче: s = v · t. То есть буквы помогают записывать в виде формул правила для нахождения значений интересующих нас величин. Чем еще алгебра отличается, например, от арифметики? В арифметических задачах по известным правилам находят неизвестное число. В алгебре неизвестную величину обозначают буквой. Эта неизвестная величина и данные в условии задачи связываются между собой уравнением, из решения которого и находится неизвестная величина. Отдельные алгебраические понятия и приемы решения задач возникли несколько тысяч лет назад в древних государствах – Вавилоне и Египте. О состоянии математических знаний в те века можно судить по древним рукописям (папирусам), найденным на местах древних городов. <Слайд 5>

Около 4000 лет назад в Вавилоне и в Египте ученые уже умели составлять линейные уравнения, с помощью которых они решали самые разнообразные задачи землемерия, строительного искусства и военного дела. Например, в Британском музее хранится задача из папируса Ринда (его называли также папирусом Ахмеса), относящегося к периоду 2000 – 1700 гг. до н. э.: «Найти число, если известно, что от прибавления к нему 2/3 его и вычитания от полученной суммы ее трети получается число 10». Решение этой задачи сводится к решению линейного уравнения:

<Слайд 6, 7>

В VII в. до н. э. греки усвоили достижения египтян в математике. В начале IX в. (830 год) хорезмийский ученый Мухаммед-бен-Муса ал-Хорезми написал книгу «Хисаб аль джабр вал-Мукабала» («Метод восстановления и противопоставления») – это была первая книга по алгебре. Она имеет особое значение в истории математики как руководство, по которому долгое время обучалась вся Европа. В ней он впервые рассмотрел методы и приемы алгебры.

Ал-джебр
(перенос слагаемых)

При решении уравненья,
Если в части одной,
Безразлично какой,
Встретится член отрицательный,
Мы к обеим частям,
С этим членом сличив.
Равный член придадим,
Только с знаком другим,—
И найдем результат, нам желательный!

Вал-мукабала
(приведение подобных)

Дальше смотрим в уравненье,
Можно ль сделать приведенье,
Если члены есть подобны,
Сопоставить их удобно.
Вычитая равный член из них,
К одному приводим их.

<Слайд 8>

С момента написания этой книги алгебра становится самостоятельной наукой. Само слово «алгебра» произошло, вероятно, от слова «ал джебр», что означает «восстановление». Словом «алгебра» в арабском языке называлось искусство врача восстанавливать сломанную руку или ногу. Хирурга у арабов называли алгебраистом. Таким образом, математика позаимствовала это слово из медицины.

<Слайд 8>

Дальнейшее развитие алгебры происходило в основном в Индии (до XII в.) и в Средней Азии (до XV в.). Алгебру до XVII в. условно называли риторической (словесной). Дело в том, что тогда не существовало единых условных знаков «+», «-», «а2» и многих других которые используем мы. Условие задачи, все действия и ответ записывали полностью словами. Для удобства запоминания иногда эта запись делалась в стихах. Математические символы вводились постепенно. Так знак равенства «=» введен английским ученым Р. Рикордом в 1557 г., знаки «:» и «*» - немецким математиком Лейбницем в конце XVII в. , скобки – XVI в. Математические символы дали возможность ученым разных стран понять друг друга. В формировании алгебры как науки большие заслуги принадлежат французским ученым Франсуа Виету и Рене Декарту. В течение XVIII-XX в. из алгебры выросли новые математические науки: алгебра многочленов, векторная алгебра. Науки эти изучаются в высшей школе.

В школьной алгебре задачи решают путем составления уравнений, изучают сами уравнения, связи между величинами (некоторые из этих связей называются функциями). При этом используются буквы, выражения с буквами подвергаются различным преобразованиям (тождественным преобразованиям). Но за всеми этими буквами чаще всего скрываются числа.

<Слайд 9>

Иногда говорят: «Алгебра держится на четырех китах: на уравнении, числе, тождестве, функции».Алгебра, к изучению которой мы приступаем, дает человеку возможность не только выполнять различные вычисления, но и учит его делать это как можно быстрее, рациональнее.

<Слайд 10>

3. Устные упражнения.

1. Найдите сумму чисел -3,7 и 6,7 (отв. 3); найдите произведение чисел найдите разность чисел Повторить правила выполнения арифметических действий с обыкновенными дробями и рациональными числами.

2. Я задумал три числа. Найдите первое, если известно, что число, противоположное ему, равно 6. Найдите второе, если число обратное ему равно 3. Найдите третье, если известно, что, умножив его на

3. Вычислите:

<Слайд 11, 12>

4. Изучение новой темы.

При решении многих задач приходится над заданными числами производить арифметические действия: сложение, вычитание, умножение и деление. Но часто, прежде чем доводить до конца каждое из этих действий, удобно заранее указать порядок (план), следуя которому надо производить эти действия. Этот план сводится к тому, что по данным задачи с помощью чисел, знаков действий и скобок составляется числовое выражение.

Примеры:  

Если в числовом выражении выполнить все указанные в нем действия, то в результате получим число, про которое говорят, что оно равно данному числовому выражению.

Так первое числовое выражение равно 2, второе равно тоже 2, третье же равно 0.

Определение 1: Запись, составленная из чисел с помощью арифметических действий (сложение, вычитание, умножение, деление, возведение в степень) называет числовым (арифметическим) выражением.

Числовое выражение может состоять из одного числа.

Определение 2: Значением числового выражения называется число, полученное в результате выполнения указанных в числовом выражении действий.

<Слайд 13>

Примеры: Поезд двигался сначала 50 минут со скоростью шестьдесят километров в час, затем остановился на станции на десять минут, потом двигался еще один час со скоростью 40 км/ч. Найдите среднюю скорость движения поезда.

Решение: По определению средней скорости движения она равна отношению пройденного пути к затраченному на этот путь времени. Вычислим путь и время движения. Прежде всего учтем, что (перешли к одинаковым единицам измерения времени). В начале движения был пройден путь в конце – путь 40·1(км).

Общий пройденный путь описывается числовым выражением:

Время, затраченное на этот путь (включая время, затраченное на остановку), описывается числовым выражением: Тогда средняя скорость движения описывается выражением: Если вычислить это выражение, то получим: .

Определение 3: Два числовых выражения, соединенные знаком «=», образуют числовое равенство. Если значения левой и правой частей числового равенства совпадают, то равенство называют верным, в противном случае – неверным.

Примеры:  - верное числовое равенство;

6 + 12 · 3 = (6 + 12) · 3 - неверное числовое равенство, так как 42 ≠54.

<Слайд 14>

Скобки помогают установить порядок действий. При этом предполагается, что все действия возможно осуществить. Всегда возможно произвести сложение, вычитание и умножение любых чисел. А вот делить одно число на другое можно, только если делитель не равен нулю: на нуль делить нельзя. Если в данном выражении на некотором этапе вычислений требуется делить на нуль, то это выражение не имеет смысла.

Примеры:   Эти выражения не имеют смысла.

<Слайд 15>

Повторить порядок выполнения действий в числовом выражении. Повторить правила выполнения действий с дробями.

5. Закрепление изученного материала.

Пр. №1 Установите, какие из следующих выражений имеют смысл и какие не имеют. Для имеющих смысл найдите числа, которым они равны.

<Слайд 16>

Пр. №2 Записать в виде равенства и проверить, верно ли оно:

а) 20% от числа 240 равны 62 (240 · 0,2 = 62 не верно);

б) число 18 составляет 3% от числа 600 (18 = 0,03 · 600 не верно);

в) произведение чисел  и 5 составляет 11% от числа 700 верно;

г) четвертая часть числа 18 равна 5% от числа 90 верно;

д) число 111:3 равно 10% от числа 370 (111 : 3 = 0,1 · 370, верно);

е) 650% от числа 12 равны 77 (6,5 · 12 = 77 78 ≠ 77, не верно).

<Слайд 17>

Пр. №3 Вычислить:

<Слайд 18, 19>

6. Домашнее задание: конспект, 10 (А)

<Слайд 20>

7. Подведение итогов урока

<Слайд 21, 22>

Литература:

  1. Математика № 12, 2004 год
  2. Алгебра: 7 класс. Контрольные, самостоятельные, рейтинговые работы/ В. А. Гольдич. – М.: Эксмо, 2008. – 144 с. – (Мастер-класс для учителя).
  3. Интернет ресурсы.