Цели урока:
Образовательная: исследовать смещение графика квадратичной функции, определить положение графика в зависимости от значений коэффициентов b, c.
Воспитательная: умение работать в группе, организованности.
Развивающая: навыки исследовательской работы, умение выдвигать гипотезы, анализировать полученные результаты, систематизировать полученные данные.
Структура урока
- Организационный момент – 3 минуты.
- Исследовательская работа – 20 минут.
- Закрепление изученного материала – 15 минут.
- Рефлексия – 2 минут.
- Итог урока – 3 минуты.
- Домашнее задание – 2 минуты.
Ход урока
1. Организационный момент.
Цель урока провести исследовательскую работу. Объектом исследования будут квадратичные функции разного вида. Вам предстоит определить, как влияют коэффициенты b, c на график функций вида y=x2+с, y=(x-b)2, y=(x-b)2+c.
Для выполнения задания необходимо разделиться на группы (4 группы по 5 человек, одна группа “эксперты” наиболее подготовленные ученики).
Каждая группа получает план исследования <Приложение>, лист формата А3 для оформления результатов.
2. Исследовательская работа
.Две группы (уровень А) исследуют функции вида y= x2+с, одна группа (уровень В) исследует функцию вида y=(x-b)2, одна группа (уровень С) исследует функцию y=(x-b)2+c. Группа “Экспертов” исследует все функции.
Функция | Результат | ||
1 группа | у=x2+3; | <Рисунок 10> | |
2 группа | у=x2-5; | <Рисунок 11> | |
3 группа | у=(х-4)2; | <Рисунок 12> | |
4 группа | у=(х-2)2+3. | <Рисунок 13> |
План работы
- Для того чтобы выдвинуть гипотезу сделайте предположение, как может выглядеть ваша функция.
- Постройте график исследуемых функций (определите вершину параболы (х0, y0), задайте таблицей 4 точки).
- Сравните получившийся график с контрольным образцом y=x2.
- Сделайте вывод (как изменилось положение графика вашей функции относительно контрольного образца).
- Результаты оформите на листе формата А3 и представьте “экспертной” группе.
“Экспертная” группа сверяет результаты свои с результатами остальных групп, систематизирует и обобщает результаты, выступает с выводами. В случае неточностей или ошибок учитель вносит коррекционные замечания.
Сверка полученных результатов со слайдами №2-5.
Любую квадратичную функцию y=ax2+bx+c, можно записать в виде y=a(x-x0)2+y0, где x0 и y0 выражаются через коэффициенты a, b, c. Таким образом, ваши коэффициенты b=x0, c=y0 являются координатами вершины параболы.
3. Закрепление изученного материала.
Фронтальная работа с классом.
1. Найти ошибку в графиках функций (Слайды№6-9).
y=(х+6)2 |
у=х2-2 |
Коэффициент b |
Нет ошибки |
Рисунок 1 |
Рисунок 2 |
у=(х+5)2-1 | у=(х-2)2+2 |
Коэффициент b и с | Коэффициент b |
Рисунок 3 | Рисунок 4 |
Результаты
<Рисунок 7>
<Рисунок 2>
<Рисунок 8>
<Рисунок 9>
Какой коэффициент вам помог найти ошибку?
2. Соотнесите графики функций согласно цветам (слайд №10).
Рисунок 5
y=(х-4)2-2 | синий |
y=-x2+5 | красный |
y=(x+1)2+3 | зеленый |
y=(x-3)2 | фиолетовый |
4. Рефлексия.
Группа “Экспертов” отвечают на вопросы:
– Какие ошибки допустили группы?
– Достигнута ли цель занятия?
– Соответствуют ли полученные результаты исследования поставленной гипотезе?
5. Итог урока (слайд №11)
:На положение графика функции y=(x-b)2+c влияют коэффициенты b и c,
“+b” парабола сдвинута вправо по оси абсцисс на b единичных отрезков,
“–b” парабола сдвинута влево по оси абсцисс на b единичных отрезков,
“+с” парабола сдвинута вверх по оси ординат на с единичных отрезков,
“-с” парабола сдвинута вниз по оси ординат на с единичных отрезков.
6. Домашнее задание
- Построить график квадратичной функции, имеющую вершину в точке А(1;-2), коэффициент a=1.
- Подумайте, в какой области можно использовать знания по данной теме (практическое применение).