Тип урока: изучение нового материала.
Цели урока:
Образовательные:
- вместе с ребятами “открыть” и доказать теорему о сумме углов треугольника;
- обобщить и систематизировать изученный материал по данной теме;
- познакомить учащихся с историческим материалом по изучаемой теме;
- привить интерес к математике посредством включения в урок игровых технологий;
- сформировать навыки, умения в решении геометрических задач;
- научить решать задачи, применяя полученные знания.
Развивающие:
- развить внимание, память, речь, логическое мышление, самостоятельность;
- рассмотреть нескольких способов доказательства теоремы, обобщить с использованием элементов исследования, развить математическую речь;
- сформировать умения сравнивать, обобщать факты и понятия;
- развить сотрудничество при работе в парах.
Воспитательные:
- воспитывать стремление достигать поставленную цель; чувство ответственности, уверенности в себе, умение работать в коллективе;
- воспитывать такие черты характера, как настойчивость, целеустремленность, трудолюбие и дисциплинированность;
- привить навыки аккуратности при построении чертежей;
- сформировать гуманные отношения на уроке.
Оборудование: ПК, мультимедийное оборудование, планшеты, листы задания с домашней работой, картонные треугольники, раздаточный материал.
Применяемые формы обучения: Фронтальная, индивидуальная работа учащихся и работа в парах. Для активизации внимания, воображения введены игровые моменты.
Структура урока:
- Организация начала урока – 2 мин.
- Определение задач урока – 1 мин.
- Подготовка к основному этапу урока -5 мин.
- Актуализация ранее изученного материала – 4 мин.
- Ознакомление с новым материалом – 10 мин
- Физкультминутка – 1 мин
- Первичная проверка понимания – 5 мин.
- Усвоение знаний. Решение задач – 13 мин.
- Подведение итогов урока. Рефлексия – 2 мин.
- Информация о домашнем задании – 2 мин.
Ход урока
1. Организационный момент.
Слайд 1 – Презентация
Приветствие. Проверка готовности учащихся к уроку. На доске тема урока и высказывание:
…Как для смертных истина ясна,
Что в треугольник двум тупым не влиться.
Данте А.
2. Определение задач урока.
Слайд 2.
Ребята, как вы думаете, о какой фигуре пойдет речь на этом уроке? Какие задачи урока?
- “открыть” и доказать теорему о сумме углов треугольника;
- научить решать задачи, применяя полученные знания.
3. Подготовка к основному этапу урока.
Сформулируйте определение треугольника. (Треугольник это геометрическая фигура, образования тремя точками, не лежащими на одной прямой, и отрезками, попарно соединяющими эти точки.)
Назовите элементы треугольника. (Углы, стороны, вершины.)
Назовите названия треугольников по сторонам. (Равносторонний, равнобедренный, разносторонний.)
Один из учащихся выбирает и показывает классу треугольники, заготовленные и лежащие на столе у учителя.
Треугольники различаются и по углам. Попробуем назвать треугольники по углам. (Другой учащийся выбирает: остроугольный, тупоугольный и прямоугольный треугольники.)
Давайте ответим на ряд вопросов:
Может ли треугольник иметь:
- два прямых угла;
- два тупых угла;
- один прямой и один тупой угол?
К доске вызывается один ученик и выполняет следующие рисунки:
Далее идет «коллективное обсуждение». Построенные лучи не пересекаются, значит, треугольник не получится. Сумма односторонних углов в первом случае равна 180°, во втором и третьем случае больше, чем 180°. В первом случае прямые параллельны, а во втором и третьем случае прямые расходятся. Делаем вывод: треугольники не могут иметь два прямых, два тупых. А также в треугольнике не может быть одновременно один тупой и один прямой углы. Слайд 3.
Опять посмотрим на модели треугольников и сделаем вывод: в прямоугольном треугольнике один угол прямой, а два угла острых, в тупоугольном треугольнике один угол тупой, а два острых, в остроугольном треугольнике все углы острые. Но теоретически мы на этот вопрос ответить не можем, пока не узнаем, чему равна сумма углов треугольника.
Итак, о треугольнике мы знаем уже достаточно много. А как вы думаете, чему равна сумма углов любого треугольника? (Заслушать ответы). Давайте проверим, верны ли ваши предположения с помощью практической работы.
Практическая работа (способствует актуализации знаний и навыков самопознания). (Работа в парах.) Слайды 4-5.
У каждого из вас есть на парте по одному треугольнику разных цветов. Ребята, мы с вами измеряли углы и с помощью транспортира и находили их сумму еще в 5 классе. Сумма углов у всех получалась разная (так может получаться потому, что неточно приложили транспортир, небрежно выполнили подсчет и т.д.).
Я предлагаю найти сумму углов треугольника двумя другими способами: возьмите треугольники, которые лежат у вас на парте. Они желтого или розового цвета. Обозначьте углы треугольника числами 1, 2, 3.
Учащиеся с желтыми треугольниками: оторвите два угла треугольника и приложите их к сторонам третьего угла так, чтобы все вершины были в одной точке. Замечаем, что все углы треугольника в сумме образуют развернутый угол.
Учащиеся с розовыми треугольниками: сложите углы во внутрь треугольника. Заметим, что перегибать треугольник надо по прямой параллельной к стороне, того угла который мы будем сгибать первым, а данный угол должен касаться данной стороны. Замечаем, что все углы треугольника в сумме образуют развернутый угол.
Чему равна градусная мера развернутого угла?
К какому выводу мы пришли?
Сумма углов треугольника равна 180 градусов.
Выполнив практическую работу, мы установили, что сумма углов треугольника равна 180 градусов.
В математике практическая работа дает возможность лишь сделать какое-то утверждение, но его нужно доказать. Утверждение, справедливость которого устанавливается путем доказательства, называется теоремой.
Какую теорему нам нужно доказать?
Сумма углов треугольника равна 180 градусов.
4. Этап подготовки учащихся к активному и сознательному усвоению новых знаний.
Слайды 6-7.
Прежде, чем доказать эту теорему решим две задачи устно они помогут нам при доказательстве теоремы:
1) |
Дано: MK || AC Укажите: а) пару накрест лежащих углов; б) пару внутренних односторонних углов. Найдите углы треугольника ABC |
2) |
Дано: NC || MK Найдите 3 и 4 |
5. Этап усвоения новых знаний, умений, навыков.
Слайды 8-9
(Возможны три способа доказательства).
Доказательство теоремы (развивает способность анализировать, обобщать и делать логические выводы, используя ранее изученный материал).
Один учащийся доказывает теорему у доски, по ходу комментируя свои действия. Остальные учащиеся работают в тетрадях. В случае неточности, учитель проводит корректировку.
Учитель: Что нам дано?
Учащийся: Дан треугольник.
Учитель: Постройте у себя в тетрадях произвольный треугольник и обозначьте его вершины А, В и С. Что требуется доказать?
Учащийся: Что сумма углов треугольника равна 180°.
Дано: ∆ ABC Доказать: A+B+C=180° План доказательства: 1) Через вершину B проведем прямую DE || AC 2) Доказать, что 4 =1 , 5 = 3 3) Доказать, что если 4+2+5=180°, значит, 1+2+3=180° или в ∆ ABC A+B+C=180° |
Но такой способ доказательства не единственный. Первое доказательство было дано еще Пифагором (5 в. до н.э.) В первой книге «Начала» Евклид излагает другое доказательство теоремы о сумме углов треугольника. Слайд 10.
Ребята доказывают устно:
Доказательство: 1) Через вершину B проведем луч BD|| AC. 2) 4и 3- накрест лежащие при BD||AC и секущей BC. 3) BD|| AC и AB- секущая, то 1+ABD=180° – односторонние углы. 4) тогда 1+2+4=180° , т.к 4=3 ,то 1+2+3=180° или A+B+C=180° |
Попробуйте доказать дома эту теорему, используя чертеж учеников Пифагора. (Ребятам раздается лист с чертежами всех трех доказательств на дом.) Слайд 11.
6. Физкультминутка.
Слайды 12-14.
7. Закрепление изученного материала.
Теперь, пользуясь теоремой, можно обосновать, почему в треугольнике не может быть двух прямых углов, двух тупых углов, двух углов, один из которых тупой, а другой прямой.
Следствие из теоремы о сумме углов треугольника (выводится учащимися самостоятельно; это способствует развитию умения формулировать собственную точку зрения, высказывать и аргументировать ее).
В любом треугольнике либо все углы острые, либо два острых угла, а третий тупой или прямой.
Если в треугольнике все углы острые, то он называется остроугольным. Если один из углов треугольника тупой, то он называется тупоугольным. Если один из углов треугольника прямой, то он называется прямоугольным.
Устная работа: (планшеты) Слайд 15.
Ответьте на вопросы: Слайд 16.
- Если один из углов треугольника прямой, то какие будут два других угла?
- Если треугольник прямоугольный, то чему равна сумма острых углов треугольника?
- Если один из углов треугольника тупой, то чему равна сумма двух других углов треугольника?
- Могут ли все три угла треугольника быть равными?
- Чему равна градусная мера каждого из них?
- В каком треугольнике сумма углов больше: в остроугольном или тупоугольном?
8. Усвоение знаний. Решение задач. Листы с заданиями.
Слайды 17-20.
1) Дано: DK – биссектриса, CDK=28°, CKD=75° Найти: углы ∆CDE |
|
2) Дано: AB=BC, A=50° BM – высота. Найти: CBM |
|
3) Дано: OB=OA, OC=CD, BOC=137° Найти: углы ∆AOB и ∆CDO |
|
4) Дано: A=90°СF, DB – биссектрисы ∆ACD Найти: COD |
Итак, ребята этот урок пополнил ваши знания о треугольнике, но это еще не предел. На следующих уроках мы продолжим изучение треугольников, и вы узнаете еще много интересного и познавательного об этой геометрической фигуре.
9. Задание на дом.
Слайд 21.
- Раздаточный маериал: три чертежа для доказательства. (приложение 1)
- П. 30-31, стр. 70, №223(а,б), 224, 225, 230
10. Итог урока.
Слайд 22.
Рефлексия:
Продолжите фразу:
- “Сегодня на уроке я узнал…”
- “Сегодня на уроке я научился…”
- “Сегодня на уроке я познакомился…”
- “Сегодня на уроке я повторил…”
- “Сегодня на уроке я закрепил…”