Статья является конспектом урока-изучения и первичного закрепления новых знаний (курс “Общая биология”, 10 класс, по программе В.Б. Захарова).
Задачи:
- формирование знаний о строении, свойствах и функциях внутреннего слоя клеточной оболочки – плазматической мембраны (а на ее примере и других мембран клетки), с использованием мыльного пузыря в качестве модели.
- развитие понятия о соответствии строения выполняемым функциям.
- первичное закрепление полученных знаний с помощью заданий в формате ЕГЭ.
Оборудование:
- таблица “Строение растительной и животной клеток по данным светового и электронного микроскопов”.
- раствор моющего средства (для получения мыльных пузырей), пластмассовая трубочка, тонкая швейная игла.
- рисунок на доске: модели молекул <Рисунок 1>.
- дидактические материалы с заданиями в формате ЕГЭ.
Ход урока
Учитель: На прошлом уроке мы провели лабораторную работу “Плазмолиз и деплазмолиз в клетках кожицы лука”, при проведении которой познакомились с интересными явлениями. В чем их суть?
Ученики: При помещении растительной ткани (эпидермис чешуйки лука) в гипертонический раствор поваренной соли (NaCl) не происходило диффузии этого раствора в клетки, а наблюдался выход воды из вакуолей клеток в сторону гипертонического раствора NaCl, чтобы уравновесить концентрации ионов по обе стороны клеточной оболочки. При этом объем вакуолей и всей цитоплазмы в целом уменьшался, что вело к отхождению цитоплазмы от клеточной стенки – плазмолизу. При возвращении исследуемой ткани в чистую воду мы также не наблюдали выхода растворенных веществ из вакуолей, а только поступление воды из окружающего пространства внутрь клетки, в вакуоли с клеточным соком, что вело к восстановлению объема клетки до прежних границ – деплазмолизу.
Учитель: Какой вывод можно сделать из проведенного опыта?
Ученики: Вероятно, поверхность клетки свободно пропускает воду в обоих направлениях, но задерживает ионы Na+ и Cl-, входящие в состав поваренной соли.
Учитель: Свойство, которое мы обнаружили, называется избирательной проницаемостью или полупроницаемостью плазматической мембраны.
Что такое плазматическая мембрана (или плазмалемма), каково ее строение, свойства и функции мы и должны разобраться на сегодняшнем уроке. Как мы и договорились, вести урок будут ваши товарищи, которые подготовили лекцию о клеточных мембранах. Ваша задача – в процессе прослушивания записать основные сведения о клеточных мембранах. Полученные знания вы должны будете применить, отвечая на вопроса теста в конце урока.
Лектор 1. Строение мембран.
Плазматическая мембрана есть во всех клетках (под гликокаликсом – у животных и под клеточной стенкой у других организмов), она обеспечивает взаимодействие клетки с окружающей ее средой. Плазмалемма образует подвижную поверхность клетки, которая может иметь выросты и впячивания, совершает волнообразные колебательные движения, в ней постоянно перемещаются макромолекулы.
Несмотря на эти непрерывные изменения, клетка всегда остается охваченной плотно прилегающей мембраной. Плазматическая мембрана представляет собой тонкую пленку толщиной менее 10 нм. Даже при увеличении ее толщины в 1 млн. раз мы получим величину всего около 1 см, при этом, если всю клетку увеличить в 1 млн. раз, ее размер будет сравним с достаточно большой аудиторией.
Мембрана включает два основных типа молекул: фосфолипиды, образующие бислой в толще мембраны, и белки на ее поверхностях. Эти молекулы удерживаются вместе с помощью нековалентных взаимодействий. Такая модель мембраны, похожая на сэндвич, была предложена американскими учеными Даниели и Давсоном в 1935 году. С появлением электронного микроскопа она была подтверждена и несколько видоизменена. В настоящее время принята жидкостно-мозаичная модель мембраны, согласно которой белковые молекулы, плавающие в жидком липидном бислое, образуют в нем своеобразную мозаику. Схема этой современной модели, предложенной в 1972 году Сингером и Николсоном, дана в учебнике.
К некоторым белкам на наружной поверхности ковалентно прикреплены углеводы, образуя гликопротеины – своеобразные молекулярные антенны, являющиеся рецепторами. Гликопротеины участвуют в распознавании внешних сигналов, поступающих из окружающей среды или из других частей самого организма, и в реакции клеток на их воздействие. Такое взаимное узнавание – необходимый этап, предшествующий оплодотворению, а также сцеплению клеток в процессе дифференцирования тканей. С распознаванием связана и регуляция транспорта молекул и ионов через мембрану, а также иммунный ответ, в котором гликопротеины играют роль антигенов.
Лектор 2. Свойства мембран.
Чтобы понять, какими свойствами обладают эти микроскопические структуры, возьмем в качестве модели мыльный пузырь. Дело в том, что молекулы мыла и фосфолипидов, входящих в состав мембран, имеют аналогичное строение <Рисунок 1>. Мыла (соли жирных кислот) в своем строении имеют гидрофильную головку (из заряженной карбоксильной группы) и длинный гидрофобный хвост. У фосфолипидов, входящих в состав мембран, тоже имеется гидрофобная хвостовая часть (из двух цепей жирных кислот) и большая гидрофильная головка, содержащая отрицательно заряженную группу фосфорной кислоты.
Рис. 1. Модели молекул.
Когда вещества подобного строения смешиваются с водой, их молекулы самопроизвольно принимают такую конфигурацию: гидрофильные головки погружаются в воду, а гидрофобные хвосты в контакт с водой не вступают, контактируя только между собой и с другими гидрофобными веществами, которые могут быть вокруг, например, с воздухом. Оказываясь на границе между двумя средами аналогичной природы, и молекулы мыла, и молекулы фосфолипидов способны к образованию бислоя. Некоторые важные свойства биологических мембран (как и мыльных пузырей), перечисленные далее, объясняются структурой липидного бислоя.
а) Подвижность.
Липидный бислой по существу – жидкое образование, в пределах плоскости которого молекулы могут свободно передвигаться – “течь” без потери контактов в силу взаимного притяжения (“лектор” демонстрирует перетекание жидкости в стенке мыльного пузыря, висящего на пластмассовой трубочке). Гидрофобные хвосты могут свободно скользить друг относительно друга.
б) Способность самозамыкаться.
“Лектор” демонстрирует, как при протыкании мыльного пузыря и последующего извлечения иглы целостность его стенки сразу же восстанавливается. Благодаря этой способности клетки могут сливаться путем слияния их плазматических мембран (например, при развитии мышечной ткани). Этот же эффект наблюдается при разрезании клетки на две части микроножом, после чего каждая часть оказывается окруженной замкнутой плазматической мембраной.
в) Избирательная проницаемость.
То есть, непроницаемость для молекул, растворимых в воде, из-за маслянистой пленки, образованной гидрофобными хвостами фосфолипидных молекул. Чтобы физически проникнуть сквозь такую пленку, вещество само должно быть гидрофобным, или оно может протиснуться через случайные щели, образовавшиеся в результате молекулярных перемещений (мелкие молекулы, например, молекулы воды).
Белки, пронизывающие всю толщу мембраны, или располагающиеся на внешней и внутренней ее поверхностях, помогают клетке обмениваться веществами с окружающей средой. Белковые молекулы обеспечивают избирательный транспорт веществ через мембрану, являясь ферментами, кроме того, внутри белковых молекул или между соседними молекулами образуются поры, через которые в клетки пассивно поступают вода и некоторые ионы.
Лектор 3. Функции плазматической мембраны.
Для чего же служит клетке структура с таким строением и свойствами? Оказывается, что она:
- Придает клетке форму и защищает от физических и химических повреждений.
- Благодаря подвижности, способности образовывать выросты и выпячивания, осуществляет контакт и взаимодействие клеток в тканях и органах.
- Отделяет клеточную среду от внешней среды и поддерживает их различия.
- Является своеобразным указателем типа клеток в силу того, что белки и углеводы на поверхности мембран и различных клеток неодинаковы.
- Регулирует обмен между клеткой и средой, избирательно обеспечивая транспорт в клетку питательных веществ и выведение наружу конечных продуктов обмена.
Лектор 4. Я хочу рассказать, как происходит транспорт через плазматическую мембрану, а аналогично и через другие мембраны клетки. Транспорт бывает пассивный, не требующий затрат энергии, и активный, энергозависимый, в процессе которого расходуется энергия, получаемая вследствие гидролиза молекул АТФ.
1. Диффузия.
Это пассивный процесс; перемещение веществ осуществляется из области с высокой концентрацией в область с низкой концентрацией. Газы и липофильные (жирорастворимые) молекулы диффундируют быстро, ионы и малые полярные молекулы (глюкоза, аминокислоты, жирные кислоты) – медленно. Диффузию ускоряют поры в белковых молекулах.
Разновидностью диффузии является осмос – перемещение воды через мембрану.
2. Эндоцитоз.
Это активный транспорт веществ через мембрану в клетку (экзоцитоз – из клетки). В зависимости от характера переносимого через мембрану вещества различают два типа этих процессов: если переносится плотное вещество – фагоцитоз (от греч. “фагос” – пожирать и “цитос” – клетка), если же капли жидкости, содержащие разнообразные вещества в растворенном или взвешенном состоянии, то – пиноцитоз (от греч. “пино” – пить и “цитос” – клетка).
Принцип переноса в обоих случаях идентичен: в том месте, где поверхность клетки соприкасается с частицей или каплей вещества, мембрана прогибается, образует углубление и окружает частицу или каплю жидкости, которая в “мембранной упаковке” погружается внутрь клетки. Здесь образуется пищеварительная вакуоль, и в ней перевариваются поступившие в клетку органические вещества. Фагоцитоз широко распространен у животных, а пиноцитоз осуществляется клетками животных, растений, грибов, бактерий и сине-зеленых водорослей.
3. Активный транспорт при использовании ферментов, встроенных в мембрану.
Перенос идет против градиента концентрации с затратами энергии, например, в клетку поступают (“накачиваются”) ионы калия, а из клетки выводятся (“выкачиваются”) ионы натрия. Эта работа сопровождается накоплением на мембране разности электрических потенциалов. Такие клеточные транспортные системы принято называть “насосами”. Аналогично осуществляется транспорт аминокислот и сахаров.
Далее “лекторы” помогают слушателям сформулировать выводы по теме урока.
Выводы:
- Плазмалемма – тонкая, около 10 нм толщиной, пленка на поверхности клетки. Она включает липопротеиновые структуры (липиды и белки).
- К некоторым поверхностным молекулам белков присоединены углеводные молекулы (они связаны с механизмом распознавания).
- Липиды мембраны самопроизвольно образуют бислой. Этим обусловливается избирательная проницаемость мембраны.
- Мембранные белки выполняют разнообразные функции, существенно облегчают транспорт через мембрану.
- Мембранные липиды и белки способны перемещаться в плоскости мембраны, благодаря чему поверхность клетки не бывает идеально гладкой.
Для закрепления информации, полученной на уроке, ученикам предлагаются задания в формате ЕГЭ.
Часть “А”
Выберите один правильный ответ.
А1. Строение и функции плазматической мембраны обусловлены входящими в ее состав молекулами:
1) гликогена и крахмала
2) ДНК и АТФ
3) белков и липидов
4) клетчатки и глюкозы
А2. Плазматическая мембрана не выполняет функцию:
1) транспорта веществ
2) защиты клетки
3) взаимодействие с другими клетками
4) синтеза белка
А3. Углеводы, входящие в структуру клеточной мембраны, выполняют функцию:
1) транспорта веществ
2) рецепторную
3) образования двойного слоя мембраны
4) фотосинтеза
А4. Белки, входящие в структуру клеточной мембраны выполняют функцию:
1) строительную
2) защитную
3) транспортную
4) все указанные функции
А5. Фагоцитоз – это:
1) поглощение клеткой жидкости
2) захват твердых частиц
3) транспорт веществ через мембрану
4) ускорение биохимических реакций
А6. Гидрофильные поверхности мембран образованы:
1) неполярными хвостами липидов
2) полярными головками липидов
3) белками
4) углеводами
А7. Прохождение через мембрану ионов Na+ и K+ происходит путем:
1) диффузии
2) осмоса
3) активного переноса
4) не осуществляется
А8. Через липидный слой мембраны свободно проходит:
1) вода
2) эфир
3) глюкоза
4) крахмал
Часть “В”
Альтернативный тест (оцените каждое утверждение, “да” или “нет”):
1) при активном транспорте затрачивается энергия
2) фагоцитоз – это вид эндоцитоза
3) диффузия – это вид активного транспорта
4) клеточная стенка растений состоит из целлюлозы
5) осмос – это диффузия воды
6) пиноцитоз – это вид фагоцитоза
7) плазмалемма состоит из трех слоев липидов
8) у животной клетки нет клеточной стенки
9) плазмалемма обеспечивает связь клетки со средой обитания
Часть “С”
Задания со свободным развернутым ответом
С1. Каково значение эндоцитоза:
а) для простейших и низших беспозвоночных?
б) для высокоорганизованных животных и человека?
С2. Что является физической основой вакуолярного транспорта в клетке?
С3. Каково биологическое значение неровностей поверхности плазмалеммы некоторых клеток (микроворсинки, реснички и т.п.)?
С4. Электрический скат и электрический угорь оглушают свою жертву разрядами в несколько сотен вольт. Какие свойства плазмалемм клеток поддерживают возможность создания таких разрядов?
С5. Как работает функция плазмалеммы по снабжению клетки “удостоверением личности”?
Ответы к заданиям.
Часть “А”.
1–3, 2–4, 3–2, 4–4, 5–2, 6–2, 7–3, 8–2.
Часть “В”.
1, 2, 4, 5, 8, 9 – “да”; 3, 6, 7 – “нет”
Часть “С”.
1а. Возможность поступления пищи в клетки и дальнейшее переваривание в лизосомах.
1б. Фагоцитарная деятельность лейкоцитов имеет огромное значение в защите организма от болезнетворных бактерий и других нежелательных частиц. Пиноцитоз в клетках почечных канальцев приводит к всасыванию белков из первичной мочи.
2. Основные свойства липидных бислоев – способность мембран замыкаться.
3. Увеличение площади поверхности клетки для обмена между клеткой и окружающей ее средой.
4. Наличие ферментных систем, осуществляющих активный транспорт (“насосов”), приводит к перераспределению зарядов на плазмалемме и созданию мембранной разности потенциалов.
5. Для этого есть ряд специфических химических групп на поверхности мембраны – “антенны”, являющиеся, чаще всего, гликопротеинами.