Важнейшим средством формирования познавательной активности учащихся на уроках алгебры являются занимательные задачи. Занимательность связана с интересными сторонами вещей, явлений, процессов, воздействующих на человека, на школьника. В этой природе занимательности заключены чрезвычайно значимые для познавательного интереса, а значит и для формирования познавательной активности, элементы, которые могут вызвать чувство удивления, являющееся началом всякого познания.
Под методикой использования занимательных заданий на уроках алгебры понимаем методы, средства и приемы подачи занимательных задач, занимательные формы организации обучения, способствующие развитию познавательной активности учащихся.
Методика использования учебных занимательных заданий в общих чертах сходна с методикой использования обычных заданий, и, хотя четкой границы между ними провести невозможно, использование занимательности обладает некоторыми особенностями.
Использование занимательных заданий целесообразно:
- когда есть опасность неприятия учащимися какого-либо учебного задания;
- при прохождении сложных тем или просто при постановке трудных дидактических задач урока;
- при выработке умений и навыков учащихся, когда требуется выполнить значительное количество однотипных упражнений;
- при изучении материала, подлежащего прочному запоминанию.
Для каждого занимательного материала, который предполагается использовать на уроке, учитель должен выяснить: будет ли он занимательным для учащихся данного класса? Органично ли он войдет в структуру урока? Будет ли его использование эффективным? Будет ли он способствовать развитию познавательной активности учащихся?
Достоинство многих занимательных задач заключается в том, что при их решении у ученика часто возникает необходимость менять ход мысли на обратный. Умение менять ход мысли на обратный – ценнейшее качество ума. Занимательные задания способствуют формированию гибкости ума, освобождению мышления от шаблонов.
Под занимательностью на уроке понимаем те компоненты урока (способы подачи учебного материала, специфические свойства информации и заданий, связанные с учебным материалом, а иногда и с организацией обучения), которые содержат в себе элементы необычайного, удивительного, неожиданного, вызывают интерес у школьников к учебному предмету и способствуют созданию положительной эмоциональной обстановке учения.
Виды занимательных заданий: занимательные вопросы, задачи, упражнения; все компоненты учебной задачи (ее подача, решение, анализ, ответ, выводы ) могут быть иногда необычными для учащихся. Поэтому считаем занимательной ту задачу, в которой содержатся элементы занимательности либо в форме подачи задачи, либо в сюжете задачи, либо в способе решения, либо в иллюстративном материале к задаче. Иногда занимательность для учащихся заключается в неожиданности ответа задачи или в выделении элементов игры при ее решении.
Дидактические игры. В игре всегда содержится элемент неожиданности и необычности, решается какая-либо задача, проблема, т.е. игра выполняет на уроке те же функции, что и занимательная задача.
Так как дидактическая игра может носить и репродуктивный, и творческий характер, то можно выделить два вида таких игр: игровая ситуация, когда ученика увлекает форма задания; математическая игра, когда ученика увлекает содержание задания.
Игровая ситуация. В подобных случаях внимание школьников привлекает необычная форма задания или неожиданная организация выполнения задания. Очень часто здесь присутствует соревновательный элемент. Возможности для создания игровых ситуаций чрезвычайно велики. Рассмотрим примеры.
Задумай число. Учитель предлагает каждому ученику задумать число и после этого дает указания, какие действия с этим числом надо произвести. В конце концов учитель угадывает результат. Учащиеся заинтересованы, хотят узнать, в чем тут дело. Этому желанию и соответствует задание: обосновать ”угадывание” ответа.
Назови формулу. Один из учащихся выходит к доске и берет у учителя карточку, на которой записана формула некоторой линейной функции. На доске начерчена таблица:
X | ||||||
Y |
Один из учеников называет любое значение х. Ученик у доски записывает его в таблицу и, подставив это значение в формулу, записывают соответствующее значение у. Ему называют еще одно значение аргумента, он записывает его в следующую клетку и внизу пишет соответствующее значение функции. Ему могут задать еще несколько значений х. Выигрывает ученик, который первый назовет формулу, записанную на карточке.
Математическое лото. Эту игровую ситуацию можно использовать при проведении обобщающих уроков.
В барабан помещают шарики с номерами пунктов учебника, которые уже изучены. Класс делится на группы, обычно по рядам. Команды составляют по 4 – 5 вопросов по каждому пункту. Вызванный ученик крутит барабан, достает шарик, показывает номер. Соперники задают вопрос. Вопрос оценивается в 1 балл, ответ – в 3 балла. Участвуют все. Затем подсчитывается сумма баллов у каждой группы. Определяется группа победитель. Учащиеся повторяют материал с желанием и интересом.
Приемы занимательности, связанные с подачей задания. Приемы этой группы дают возможность то или иное задание облечь в занимательную форму, способствуя тем самым, развитию познавательной активности учащихся.
Математический герой. В урок вводится какой-либо математический герой, который или решает задание, или предлагает его для решения, или придумывает фокус и т.д.
Например, однажды Витя Верхоглядкин записал выражение 25· х· 4. Потом он вместо х стал подставлять в это выражение по очереди числа 13, 21, 39, 47. Получив значение каждого произведения, он очень удивился тому, что все числа оказались “круглыми”. Не могли бы вы объяснить почему?
Необычная запись, чертеж, схема . Ярким примером данного приема является задание, связанное с занимательным квадратом. Занимательный квадрат – это квадрат, разбитый на 9 клеток; в каждую клетку записывается один элемент так, чтобы суммы или произведения всех элементов по любой горизонтали, вертикали удовлетворяли определенному условию ( например, были бы равны одному и тому же элементу).
Пример.
X | ||
Запишите одночлены x, x2, x3, x4, x5, x7, x8, x9 в пустые клетки квадрата так, чтобы произведение их по любой горизонтали, вертикали и диагонали было равно х15.
Задумай. Учитель (ученик) задумывает математический объект, а ученики (учитель) должны отгадать то, что задумано, или то, что связано с задуманным.
Пример. Я задумал два числа. Задайте только один вопрос и, выслушав ответ, скажите, одинакового ли они знака.
Найдите ошибку. Ученику предлагается отыскать ошибку (ошибки) в решении (ответе) одного или нескольких заданий.
Пример. Некоторая линейная функция задана таблицей:
х | – 2 | – 1 | 0 | 1 | 2 |
у | – 8 | – 4 | – 2 | 1 | 4 |
Задайте ее формулой, если известно, что одно из значений функции записано неверно.
Нарушение стереотипа. Старые, неполные знания довлеют над людьми даже после получения новых, более полных знаний. Например, изучая в течении нескольких лет положительные числа, для которых всегда справедливы неравенства х < 2х, с > 1/c , учащиеся с трудом осознают, что при прохождении темы “ Отрицательные числа” эти неравенства верны не всегда. Чтобы ускорить понимание этого факта, полезно использовать задания, которые помогают школьникам сделать обобщение.
Пример. Что больше:
а) х или 2х;
б) а или – а;
в) с или 1/c?
Ученые приходят к выводу, что умению работать творчески, можно специально учиться. На первых порах желательно познакомиться с опытом творческой деятельности других. Однако этого мало. Узнать новую идею – это не то же самое, что выдвинуть, предложить ее. Основное препятствие на пути поиска нового – шаблонность мышления. Поэтому ученые предлагают на первых этапах творческой деятельности использовать специальные указатели, которые помогают сдвинуть сознание с мертвой точки. Опыт показывает, что среди таких указателей могут быть приемы занимательности.
Возникает вопрос, почему именно занимательность стимулирует создание нового. Оба понятия “творчество” и ” занимательность” тесно связаны. Главное заключается в том, что они оба обладают общей важнейшей характеристикой: и то и другое должно быть необычным.
Связь этих понятий подтверждается еще и тем, что они могут взаимно обогащать друг друга. Так, некоторые приемы занимательности сходны с приемами творческого мышления. И те и другие не только дают необычное направление мысли, но и часто являются непосредственным руководством к творческому действию. Таким образом, неожиданно открывается еще одно достоинство занимательного подхода: он помогает выработке творческого мышления.
Достаточно продуктивны следующие общие направления мыслительной деятельности: необычный подход к рассмотрению вопроса; поиск ассоциаций; перенос идеи из другой области знаний; “игра” с объектами и идеями.
Источниками познавательной активности могут быть: содержание учебного материала, процесс учения, который выступает как процесс организации познавательной активности учащихся, резервы личности ученика и учителя.
Формами проявления познавательной активности на занятии являются: самостоятельность, индивидуальное творчество.
Условиями формирования познавательной активности являются:
- максимальная опора на активную мыслительную деятельность учащихся,
- ведение учебного процесса на оптимальном уровне развития учащихся,
- эмоциональная атмосфера обучения,
- положительный эмоциональный тонус учебного процесса.
Конечный результат усилий педагога заключается в переводе специально организованной активности ученика в его собственную, то есть стратегия учителя должна заключаться в переориентации сознания учащихся: учение из каждодневной принудительной обязанности должно стать частью общего знакомства с окружающим миром.