Системы счисления. Принцип "8 – 2 – 16"

Разделы: Информатика


Тип урока: урок – закрепление изученного. (обобщающий)

Вид: комбинированный урок.

Цель: Обобщить и применить для решения задачи знания о способах и методах переводов чисел. Развитие познавательного интереса, творческой активности учащихся.

Задачи урока:

Обучающая: углубление, обобщение и систематизация приемов перевода чисел из одной в другую системы счисления.
Воспитательная: развитие познавательного интереса, логического мышления.
Развивающая: развитие алгоритмического мышления, памяти, внимательности.

Ход урока:

  1. Организационный момент (3 мин).
  2. Проверка домашнего задания:
  3. а) Теория: Калькулятор (3 мин);
    б) Практика: проверка д/з за ПК (7 мин).

  4. Принцип “8-2-16”
  5. а) теория: суть принципа, примеры (10 мин);
    б) практика: выполнить практическое задание (по карточкам) (15 мин).

  6. Запись домашнего задания (2 мин).
  7. Подведение итогов.

1. Организационный момент.
2. Проверка домашнего задания:

а) Пройти по рядам и посмотреть (поверхностно – есть или нет) записи решения упражнений. Предложить ученикам проверить домашние задания самостоятельно с помощью ПК. Для этого мы используем стандартное приложение ОС Windows – Калькулятор.

Запись на доске и в тетради:

Запуск: Пуск – Программы – Стандартные – Калькулятор

Команда: Вид – Инженерный.

С помощью этой программы можно переводить числа, записанные в двоичной, восьмеричной, десятичной и шестнадцатеричной системах координат. Имеют обозначения:

Hex (Hexadecimal) - шестнадцатеричная

Dec (Decimal) - десятичная

Oct (Octal) - восьмеричная

Bin (Binary) – двоичная.

Рисунок 1

Алгоритм перевода чисел:

Например, перевести число 19F16=X10.

    1. Установить переключатель в положение Hex (щелкнув по нему левой кнопкой мыши).
    2. Набрать число с помощью мышки или клавиатуры (латинские буквы).
    3. Установить переключатель в положение Dec – получим ответ.
    4. Проверить правильность в тетради и поставить +.

 

б) Ученики садятся за компьютеры и выполняют самопроверку.

  1. Мы научились переводить числа из одной системы в другую (письменно или с помощью программы Калькулятор), а теперь давайте рассмотрим способы переводов, которые не требуют от нас каких-либо вычислений. Назовем его “Принцип 8-2-16”.

а) Раздаю на стол карточки с таблицами:

 

Таблица перевода чисел из 8 с.с. в 2 с.с. и наоборот через ТРИАДЫ.

 

8 с.с.

2 с.с.

8 с.с.

2 с.с.

0

000

4

100

1

001 5 101

2

010 6 110
3 011 7 111

Например:

6118=110 001 0012
101 111 1112=5778.

Таблица перевода чисел из 16 с.с. в 2 с.с. и наоборот через ТЕТРАДЫ.

16 c.c. 2 c.c. 16 c.c. 2 c.c.
0 0000 8 1000
1 0001 9 1001
2 0010 A 1010
3 0011 B 1011
4 0100 C 1100
5 0101 D 1101
6 0110 E 1110
7 0111 F 1111

Например:

61А16=110 0001 10102
11 1110 01112=3Е716.

 

В восьмеричной системе счисления восемь цифр: 0, 1, 2, 3, 4, 5, 6, 7. Перевод из этой системы в двоичную достаточно прост. Достаточно составить таблицу триад (по три цифры).

При переводе восьмеричного числа в двоичное заменяют каждую восьмеричную цифру на соответствующую триаду из таблицы (см примеры в карточке).

Для обратной операции, то есть для перевода из двоичной в восьмеричную систему, двоичное число разбивают на триады (справа налево), потом заменяют каждую группу одной восьмеричной цифрой.

Аналогично производим перевод из шестнадцатеричной в двоичную системы и наоборот.

б) Предлагаю ребятам для закрепления посостязаться друг с другом “Кто быстрее”, кроме скорости здесь большую роль играет внимательность и аккуратность.

    • Давайте напишем числа в восьмеричной системе счисления, чтобы их было 17: 0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 20 (в данном числовом ряде после числа 7 происходит превышения разряда так как числа 8 не существует мы переходи из разряда единиц в разряд десятков и так далее). Нам не случайно понадобились эти числа, потому что мы рассмотрим координатную плоскость для восьмеричной системы счисления. Вам будут даны координаты рисунка в двоичной системе координат, а рисунок нужно выполнить в восьмеричной системе. Точки соединять по порядку их следования.
    • Раздаю карточки с координатами (2-4 варианта) и первую точку (произвольную) показывают на примере (на доске: расписав координаты и показав на координатной плоскости). Примеры таблиц с координатами:

Вариант 1.

 

х

у

1

1

100

2

100

111

3

110

111

4

1000

1001

5

1010

111

6

1010

100

7

1100

10

8

1010

10

9

1010

11

10

1000

101

11

1000

1

12

110

1

13

110

11

14

100

11

15

100

1

16

10

1

17

10

101

 

Вариант 2.

 

х

у

1

100

110

2

11

100

3

10

11

4

10

100

5

100

110

6

1011

110

7

1100

111

8

1010

111

9

1010

1000

10

1001

1000

11

1001

1001

12

1000

1000

13

1000

100

14

1001

11

15

1001

10

16

1000

11

17

1000

100

18

101

100

19

110

11

20

101

10

21

100

10

22

101

11

23

100

100

24

100

110

    • Первые 2-3 человека, выполнившие задание правильно (рисунок совпадает с оригиналом) получают оценку “5”.

Примеры рисунков – ответов:

/p>

Рисунок 2

Рисунок 3

  1. В качестве домашнего задания прошу нарисовать рисунок в шестнадцатеричной системе счисления, записать координаты в таблицу в двоичной системе.
  2. Итак мы рассмотрели несколько способ переводов чисел: общие и частные. Одни из них требовали от Вас умения решать задачи математическими методами, другие с привлечения компьютера, третьи с применением триад и тетрад. Таким образом, мы с вами повторили тему “Переводы чисел в различных системах счисления” и подготовились к контрольной работе. Удачи. До свидания!

Используемая литература:

  1. Энциклопедия для детей. Том 22. Информатика/Глав. ред. Е. А. Хлебалина, вед. науч. ред. А.Г.Леонов.- М.: Аванта+, 2003. – 624 с.: ил.
  2. Ефимова О., Морозов В., Угринович Н. Курс компьютерных технологий с основами информатики. Учебное пособие для старших классов. –М.: ООО “Издательство АСТ”; ABF, 2000. – 432 с.: ил.