Введение
Актуальность: В условиях современных образовательных реформ в России, направленных на повышение качества образования, важным становится формирование функциональной грамотности у учащихся. Это требует от педагогов применения новых подходов к обучению, в частности, к решению текстовых задач.
Цель: Разработать и внедрить методику преобразования традиционных текстовых задач в контекстные задачи, способствующие формированию развитию функциональной грамотности.
Задачи:
- Анализ существующих подходов к решению текстовых задач.
- Разработка контекстных задач, отражающих реальные жизненные ситуации.
- Оценка эффективности предложенной методики в процессе обучения.
Содержание практики
В рамках практики проводился анализ традиционных текстовых задач и их недостатков с точки зрения формирования функциональной грамотности. На основе этого были разработаны новые задачи, которые:
- Интегрируют междисциплинарный подход.
- Связаны с реальными жизненными ситуациями.
- Способствуют развитию критического мышления и практических навыков.
Разработка новых тестов и заданий для оценки функциональной грамотности учащихся является важным шагом к улучшению качества образования в России. Это позволит не только повысить уровень знаний школьников, но и подготовить их к полноценной жизни в современном обществе, что соответствует задачам, поставленным на уровне государства.
Задания по функциональной грамотности имеют несколько ключевых особенностей, которые делают их эффективными для обучения и оценки навыков учащихся. Вот основные характеристики:
1. Реальная жизненная ситуация
Задания основаны на реальных жизненных ситуациях, которые значимы для школьников и соответствуют их возрастным особенностям. Это позволяет учащимся видеть практическое применение знаний и умений в повседневной жизни, что повышает мотивацию к обучению.
2. Комплексность и структура
Задания являются комплексными и структурированными, содержащими несколько взаимосвязанных вопросов, относящихся к определённому сюжету. Это помогает развивать критическое мышление и способность анализировать информацию.
3. Разнообразие форматов
Используются как сплошные тексты (без визуальных изображений), так и несплошные (таблицы, диаграммы, графики, рисунки). Это разнообразие форматов позволяет учитывать разные стили обучения и предпочтения учащихся.
4. Междисциплинарный характер
Задания часто имеют междисциплинарный характер и могут не требовать привлечения специальных предметных знаний. Это способствует интеграции знаний из разных областей и развитию общей образовательной компетенции.
5. Экспериментальные работы
Некоторые задания могут описывать экспериментальные работы исследовательского типа, содержать результаты реальных научных экспериментов или предполагать анализ первичных научных данных. Это развивает навыки научного мышления и практического применения знаний.
6. Разнообразие форм ответа
Форма ответа может быть различной: от выбора одного или нескольких верных ответов из предложенных вариантов до свободного краткого или развернутого ответа. Это позволяет оценивать уровень понимания материала с разных сторон.
7. Дополнительная информация
Задания могут требовать привлечения дополнительной информации или содержать избыточную информацию, что развивает навыки поиска и анализа данных. Эти особенности делают задания по функциональной грамотности важным инструментом в образовательном процессе, позволяя учащимся развивать необходимые навыки для успешной жизни в современном обществе.
Примеры контекстных задач включают сценарии из повседневной жизни, такие как планирование бюджета или оценка затрат на проект. Ученикам предлагается не только найти ответ, но и обосновать свои действия и выбор решения.
Результаты
В результате внедрения новой методики наблюдается:
- Повышение интереса учащихся к математике.
- Улучшение навыков анализа и синтеза информации.
- Развитие способности применять математические знания в реальных ситуациях.
Оценка результатов проводилась через тестирование и анализ выполнения задач, что показало положительную динамику в усвоении материала.
Выводы
Преобразование текстовых задач в задачи на формирование функциональной грамотности является эффективным методом обучения, который способствует более глубокому пониманию учебного материала и подготовке учащихся к реальным жизненным ситуациям. Данная практика подтверждает необходимость интеграции контекстного обучения в образовательный процесс для достижения высоких результатов в формировании функциональной грамотности.
«Компьютеры для школ»
Три школы из Михайловского района получили 70 компьютеров. Школа с. Кремово получила на 6 компьютеров больше школы с. Ляличи, а школа из с. Ивановки на 10 компьютеров больше школы с. Кремово. Все компьютеры были приобретены в магазине «DNS». За компьютеры для школы с. Ляличи управление образования по Михайловскому району заплатило девятьсот тысяч рублей.
1. Рассчитайте, какое количество компьютеров получила школа с. Ляличи.
Решение _____________________________
Ответ _______________________________
2. Высчитайте стоимость всех компьютеров, купленных в магазине «DNS»
Решение _____________________________
Ответ _______________________________
3. Компьютеры можно было купить в других магазинах. Список магазинов и стоимость компьютером приведены ниже в таблице.
Название магазина |
Стоимость 1 компьютера, руб. |
Скидка, % |
В-лазер |
64000 |
12 |
DNS |
62500 |
10 |
Домотехника |
61000 |
8 |
Смогло бы управление образование Михайловского района сэкономить и какую сумму, если бы приобрели компьютеры в другом магазине? Ответ обоснуйте.
|
Да |
|
Нет |
Решение _____________________________
Ответ _______________________________
Характеристики и система оценивания математическая грамотность (7 класс)
Задача № 170 (Алгебра 7 класс под редакцией С.А. Теляковского)
Комплексное задание «Компьютеры для школ» (3 задания).
Задание 1.
Характеристики задания
Математическое содержание знаний: количество
Компетентностная область:
Формулировать
- Выявлять связь между неизвестными и известными величинами и отношениями.
- Создание математической модели, отражающей описанную ситуацию.
Применять
- Преобразование математических моделей (уравнений и неравенств, их систем) реальных ситуаций.
- Выполнять простые вычисления.
Интерпретировать
- Анализ математического решения и полученных результатов.
- Оценка полученных результатов в контексте с описанной ситуацией.
Контексты: личный или индивидуальный
Уровень сложности: средний
Формат ответа: развернутый ответ
Система оценивания
Код |
Содержание критерия |
2 балла |
Дан верный ответ: 16. Приведено верное решение.
Возможное решение:
|
1 балл |
Запись решения сделана верно, но допущена вычислительная ошибка. |
0 баллов |
Другие ответы. |
Задание 2.
Характеристики задания
Математическое содержание знаний: количество
Компетентностная область:
Формулировать
- Выявлять связь между неизвестными и известными величинами и отношениями.
- Переводить проблему в стандартное/известное математическое утверждение или известный алгоритм.
Применять
- Обобщать, основываясь на результатах применяемых математических понятиях для отыскания решения..
- Выполнять простые вычисления.
Интерпретировать
- понимать зависимость между контекстом проблемы и представлением математического решения;
- использовать это понимание, чтобы интерпретировать решение в контексте и измерять осуществимость и возможность ограничений решения.
- Оценка полученных результатов в контексте с описанной ситуацией.
Контексты: личный или индивидуальный
Уровень сложности: средний
Формат ответа: развернутый ответ
Система оценивания
Код |
Содержание критерия |
1 балл |
Дан верный ответ: 3937500. Приведено верное решение.
Возможное решение:
|
0 баллов |
Другие ответы. |
Задание 3.
Характеристики задания
Математическое содержание знаний: количество
Компетентностная область:
Формулировать
- выделять/выбирать математическое описание или утверждение, описывающее проблему;
- выделять/идентифицировать ключевые переменные в модели;
- выделять/выбирать утверждение, относящееся к контексту проблемы
Применять
- оперировать решением, показывающее и/или подводящее к и представляющее промежуточные математические результаты;
- Обобщать, основываясь на результатах применяемых математических понятиях для отыскания решения.
- Выполнять вычисления.
Интерпретировать
- понимать зависимость между контекстом проблемы и представлением математического решения;
- выделять влияние (отношение) математического результата или вывода на смысл контекста проблемы;
- Оценка полученных результатов в контексте с описанной ситуацией.
Контексты: личный или индивидуальный
Уровень сложности: высокий
Формат ответа: развернутый ответ
Система оценивания
Код |
Содержание критерия |
2 балла |
Дан ответ: «Да», 9100. Приведено верное обоснование.
|
1 балл |
Дан ответ: «Да», запись решения сделана верно, но допущена вычислительная ошибка. |
0 баллов |
Другие ответы. |
Список литературы
- Корочина О.П. (2023). Современный урок: функциональная грамотность (математическая грамотность). Сборник методических материалов. Владимир: ГАОУ ДПО ВО ВИРО.
- Сапачёва Л.Р. (2021). Эффективные приемы обучению решения текстовых задач по математике в начальной школе. Мурманск: ГАУДПО МО «Институт развития образования».
- Леонтьев А.А. (2021). Функциональная грамотность: теоретические основы и практические подходы.
- Кузнецов А.И. (2023). Методические рекомендации по формированию функциональной грамотности у школьников.
- Петров А., Джонсон Б. (2017). PISA и функциональная грамотность: международный опыт и его применение в России.
- Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И. и др. (2023). Математика. Алгебра. 7 класс. Учебник. Базовый уровень. ФГОС. Под редакцией Теляковского С.А. Издательство "Просвещение".