Автор работы:
Соколова Т.В.,
ученица 9 класса
Научный руководитель:
Новожилова Е.В.,
учитель математики
Введение
Возникновение теории вероятностей как науки относят к средним векам и первым попыткам математического анализаазартных игр (орлянка, кости, рулетка). Первоначально её основные понятия не имели строго математического вида, к ним можно было относиться как к некоторым эмпирическим фактам, как к свойствам реальных событий, и они формулировались в наглядных представлениях. Самые ранние работы учёных в области теории вероятностей относятся к XVII веку. Исследуя прогнозирование выигрыша в азартных играх, Блез Паскаль и Пьер Ферма открыли первые вероятностные закономерности, возникающие при бросании костей. Под влиянием поднятых и рассматриваемых ими вопросов решением тех же задач занимался и Христиан Гюйгенс. При этом с перепиской Паскаля и Ферма он знаком не был, поэтому методику решения изобрёл самостоятельно. Его работа, в которой вводятся основные понятия теории вероятностей (понятие вероятности как величины шанса; математическое ожидание для дискретных случаев, в виде цены шанса), а также используются теоремы сложения и умножения вероятностей (не сформулированные явно), вышла в печатном виде на двадцать лет раньше (1657 год) издания писем Паскаля и Ферма (1679 год) Важный вклад в теорию вероятностей внёс Якоб Бернулли: он дал доказательство закона больших чисел в простейшем случае независимых испытаний. В первой половине XIX века теория вероятностей начинает применяться к анализу ошибок наблюдений; Лаплас и Пуассон доказали первые предельные теоремы. Во второй половине XIX века основной вклад внесли русские учёные П.Л.Чебышёв, А.А.Марков и А.М.Ляпунов. В это время были доказаны закон больших чисел, центральная предельная теорема, а также разработана теория цепей Маркова. Современный вид теория вероятностей получила благодаря аксиоматизации, предложенной Андреем Николаевичем Колмогоровым. В результате теория вероятностей приобрела строгий математический вид и окончательно стала восприниматься как один из разделов математики.
Вероятность (вероятностная мера) - численная мера возможности наступления некоторого события.
С практической точки зрения, вероятность события - это отношение количества тех наблюдений, при которых рассматриваемое событие наступило, к общему количеству наблюдений. Такая трактовка допустима в случае достаточно большого количества наблюдений или опытов.
Вероятность - степень (относительная мера, количественная оценка) возможности наступления некоторого события. Когда основания для того, чтобы какое-нибудь возможное событие произошло в действительности, перевешивают противоположные основания, то это событие называют вероятным, в противном случае - маловероятным или невероятным. Перевес положительных оснований над отрицательными, и наоборот, может быть в различной степени, вследствие чего вероятность (и невероятность) бывает большей либо меньшей. Поэтому часто вероятность оценивается на качественном уровне, особенно в тех случаях, когда более или менее точная количественная оценка невозможна или крайне затруднительна. Возможны различные градации «уровней» вероятности.
Цель проекта: открыть для себя вероятностную природу окружающего нас мира и увидеть элементы статистики в результатах ОГЭ в ТМР.
Задачи проекта:
- Познакомиться с историей возникновения и развития теории вероятностей;
- Выявить значение теории вероятностей в современном мире;
- Рассмотреть решение задач по теории вероятностей, входящих в ОГЭ и ЕГЭ;
- Составить диаграммы по сдаче ОГЭ в ТМР за 2017 год.
Теория вероятностей в жизни
Людей всегда интересовало будущее. Человечество во все времена искало способ его предугадать, или спланировать, в разное время разными способами. В современном мире есть теория, которую наука признает и пользуется для планирования и прогнозирования будущего. Речь идет о теории вероятностей. Кстати правильно говорить именно «теория вероятностей» во множественном числе, а не «теория вероятности».
В жизни мы часто сталкиваемся со случайными явлениями. Чем обусловлена их случайность - нашим незнанием истинных причин происходящего или случайность лежит в основе многих явлений? Споры на эту тему не утихают в самых разных областях науки. Случайным ли образом возникают мутации, насколько зависит историческое развитие от отдельной личности, можно ли считать Вселенную случайным отклонением от законов сохранения? Пуанкаре, призывая разграничить случайность, связанную с неустойчивостью, от случайности, связанной с нашим незнанием, приводил следующий вопрос: «Почему люди находят совершенно естественным молиться о дожде, в то время как они сочли бы смешным просить в молитве о затмении?»
У каждого «случайного» события есть четкая вероятность его наступления. В стабильной системе вероятность наступления событий сохраняется из года в год. То есть, с точки зрения человека с ним произошло случайное событие. А с точки зрения системы, оно было предопределенно.
Разумный человек должен стремиться мыслить, исходя из законов вероятностей (статистики). Но в жизни о вероятности мало кто думает. Решения принимаются эмоционально.
Люди боятся летать самолетами. А между тем, самое опасное в полете на самолете - это дорога в аэропорт на автомобиле. Но попробуй кому-то объяснить, что машина опасней самолета. Вероятность того, что пассажир, севший в самолет погибнет в авиакатастрофе составляет примерно 1/8000000. Если пассажир будет садиться каждый день на случайный рейс, ему понадобится 21 000 лет чтобы погибнуть.
По исследованиям: в США в первые 3 месяца после терактов 11 сентября 2001 года погибло еще одна тысяч людей... косвенно. Они в страхе перестали летать самолетами и начали передвигаться по стране на автомобилях. А так как это опасней, то количество смертей возросло.
По телевидению пугают: птичьим и свиными гриппами, терроризмом..., но вероятность этих событий ничтожна по сравнению с настоящими угрозами. Опасней переходить дорогу по зебре, чем лететь на самолете. От падения кокосов погибает - 150 человек в год. Это в десятки раз больше, чем от укуса акул. Но фильма "Кокос-убийца" пока не снято. Подсчитано, что шанс человека быть подвергнутым нападению акулы составляет 1 к 11,5 млн, а шанс погибнуть от такого нападения 1 к 264,1 млн. Среднегодовое количество утонувших в США составляет 3306 человек, а погибших от акул
1. Миром правит вероятность и нужно помнить об этом.
Основные понятия теории вероятностей
Главным понятием этой дисциплины является "событие". События бывают трех видов: Достоверные. Те, которые произойдут в любом случае (монета упадет). Невозможные. События, что не произойдут ни при каком раскладе (монета останется висеть в воздухе). Случайные. Те, что произойдут или не произойдут. На них могут повлиять разные факторы, которые предугадать очень трудно. Если говорить о монете, то случайные факторы, что могут повлиять на результат: физические характеристики монеты, ее форма, исходное положение, сила броска и т.д.
Существует 3 определения вероятности: классическое; статистическое; геометрическое. Каждое имеет свое место в изучении вероятностей. Теория вероятности, формулы и примеры (9 класс) в основном используют классическое определение, которое звучит так: Вероятность ситуации А равняется отношению числа исходов, что благоприятствуют ее появлению, к числу всех возможных исходов. Формула выглядит так:
Р(А)=m/n
Статистика - это раздел математики, который изучает вопросы сбора, измерения и анализа информации, представленной в числовой форме. Происходит слово статистика от латинского слова status (состояние или положение дел).
Так, с помощью статистики мы можем узнать свое «положение дел», касающихся финансов. С начала месяца можно вести дневник расходов и по окончании месяца, воспользовавшись статистикой, узнать сколько денег в среднем мы тратили каждый день или какая потраченная сумма была наибольшей в этом месяце либо узнать какую сумму мы тратили наиболее часто.
На основе этой информации можно провести анализ и сделать определенные выводы: следует ли в следующем месяце маленько сбавить аппетит, чтобы тратить меньше денег либо наоборот позволить себе не только хлеб с водой, но и колбасу.