Теоретические основы и методика математического развития дошкольников

Разделы: Математика, Работа с дошкольниками, Общепедагогические технологии, Дополнительное образование


Под математическим развитием дошкольников следует понимать сдвиги и изменения в познавательной деятельности личности, которые происходят в результате формирования элементарных математических представлений и связанных с ними логических операций.

Формирование элементарных математических представлений - это целенаправленный и организованный процесс передачи и усвоения знаний, приемов и способов умственной деятельности (в области математики).

Задачи методики математического развития как научной области

  • Научное обоснование программных требований к уровню формирования математических представлений у дошкольников в каждой возрастной группе.
  • Определение содержания математического материала для обучения детей в ДОУ.
  • Разработка и внедрение в практику эффективных дидактических средств, методов и разнообразных форм организации работы по математическому развитию детей.
  • Реализация преемственности в формировании математических представлений в ДОУ и в школе.
  • Разработка содержания подготовки высокоспециализированных кадров, способных осуществлять работу по математическому развитию дошкольников.
  • Разработка методических рекомендаций родителям по математическому развитию детей в условиях семьи.

Цель математического развития дошкольников

  • Всестороннее развитие личности ребенка.
  • Подготовка к успешному обучению в школе.
  • Коррекционно-воспитательная работа.

Задачи математического развития дошкольников

  • Формирование системы элементарных математических представлений.
  • Формирование предпосылок математического мышления.
  • Формирование сенсорных процессов и способностей.
  • Расширение и обогащение словаря и совершенствование связанной речи.
  • Формирование начальных форм учебной деятельности.

Краткое содержание разделов программы по ФЭМП в ДОУ

  • «Количество и счет»: представления о множестве, числе, счете, арифметических действиях, текстовых задачах.
  • «Величина»: представления о различных величинах, их сравнения и измерения (длине, ширине, высоте, толщине, площади, объеме, массе, времени).
  • «Форма»: представления о форме предметов, о геометрических фигурах (плоских и объемных), их свойствах и отношениях.
  • «Ориентировка в пространстве»: ориентировка на своем теле, относительно себя, относительно предметов, относительно другого лица, ориентировка на плоскости и в пространстве, на листе бумаги (чистом и в клетку), ориентировка в движении.
  • «Ориентировка во времени»: представление о частях суток, днях недели, месяцах и временах года; развитие «чувства времени».

Значение обучения детей математике

Обучение ведет развитие, является источником развития.

Обучение должно идти впереди развития. Необходимо ориентироваться не на то, что способен уже делать сам ребенок, а на то, что он может сделать при помощи и под руководством взрослого. Л.С.Выгодский подчеркивал, что надо ориентироваться на «зону ближайшего развития».

Упорядоченные представления, правильно сформированные первые понятия, вовремя развитые мыслительные способности, служат залогом дальнейшего успешного обучения детей в школе.

Психологические исследования убеждают, что в процессе обучения происходят качественные изменения в психическом развитии ребенка.

С ранних лет важно не только сообщать детям готовые знания, но и развивать умственные способности детей, научить их самостоятельно, осознанно получать знания и использовать их в жизни.

Обучение в повседневной жизни носит эпизодический характер. Для математического развития важно, чтобы все знания давались систематически и последовательно. Знания в области математики должны усложняться постепенно с учетом возраста и уровня развития детей.

Важно организовать накопление опыта ребенка, научить его пользоваться эталонами (формы, величины и др.), рациональными способами действия (счета, измерения, вычислений и др.).

Учитывая незначительный опыт детей, обучение идет преимущественно индуктивным путем: сначала накапливаются с помощью взрослого конкретные знания, затем они обобщаются в правила и закономерности. Необходимо использовать и дедуктивный метод: сначала усвоение правила, затем его применение, конкретизация и анализ.

Для осуществления грамотного обучения дошкольников, их математического развития воспитатель сам должен знать предмет науки математики, психологические особенности развития математических представлений детей и методику работы.

Принципы обучения математике

  1. Сознательность и активность.
  2. Наглядность.
  3. Систематичность и последовательность.
  4. Прочность.
  5. Постоянная повторяемость.
  6. Научность.
  7. Доступность.
  8. Связь с жизнью.
  9. Развивающее обучение.
  10. Индивидуальный и дифференцированный подход.
  11. Коррекционная направленность и др.

Методы ФЭМП. Методы организации и осуществления учебно-познавательной деятельности

1. Перцептивный аспект (методы, обеспечивающие передачу учебной информации педагогом и восприятие ее детьми посредством слушания, наблюдения, практических действий):

а) словесный (объяснение, беседа, инструкция, вопросы и др.);

б) наглядный (демонстрация, иллюстрация, рассматривание и др.);

в) практический (предметно-практические и умственные действия, дидактические игры и упражнения и др.).

2. Гностический аспект (методы, характеризующие усвоение нового материала детьми, - путем активного запоминания, путем самостоятельных размышлений или проблемной ситуации):

а) иллюстративно-объяснительный;

б) проблемный;

в) эвристический;

г) исследовательский и др.

3. Логический аспект (методы, характеризующие мыслительные операции при подаче и усвоении учебного материала):

а) индуктивный (от частного к общему);

б) дедуктивный (от общего к частному).

4. Управленческий аспект (методы, характеризующие степень самостоятельности учебно-познавательной деятельности детей):

а) работа под руководством педагога,

б) самостоятельная работа детей.

Организация работы по математическому развитию детей в ДОУ

  • Организация занятий по математике в дошкольном учреждении.
  • Примерная структура занятий по математике.
  • Методические требования к занятию по математике.
  • Способы поддержания хорошей работоспособности детей на занятии.
  • Формирование навыков работы с раздаточным материалом.
  • Формирование навыков учебной деятельности.
  • Значение и место дидактических игр в математическом развитии дошкольников.

Занятия являются основной формой организации обучения детей математике в детском саду.

Примерная структура традиционных занятий

  1. Организация занятия.
  2. Ход занятия.
  3. Итог занятия.

1. Организация занятия

Занятие начинается не за партами, а со сбора детей вокруг воспитателя, который проверяет их внешний вид, привлекает внимание, рассаживает с учетом индивидуальных особенностей, учитывая проблемы в развитии (зрения, слуха и др.).

В младших группах: подгруппа детей может, например, рассаживаться на стулья полукругом перед воспитателем.

В старших группах: группа детей обычно рассаживается за парты по двое, лицом к воспитателю, так как проводится работа с раздаточным материалом, вырабатываются навыки учебной деятельности.

Организация зависит от содержания работы, возрастных и индивидуальных особенностей детей. Занятие может начинаться и проводиться в игровой комнате, в спортивном или музыкальном зале, на улице и т.п., стоя, сидя и даже лежа на ковре.

Начало занятия должно быть эмоциональным, заинтересо­вывающим, радостным.

В младших группах: используются сюрпризные моменты, сказочные сюжеты.

В старших группах: целесообразно использовать проблемные ситуации.

В подготовительных группах, организовывается работа дежурных, обсуждается, чем занимались на прошлом занятии (в целях подготовки к школе).

2. Ход занятия

Примерные части хода математического занятия

  1. Математическая разминка (обычно со старшей группы).
  2. Работа с демонстрационным материалом.
  3. Работа с раздаточным материалом.
  4. Физкультминутка (обычно со средней группы).
  5. Дидактическая игра.

Количество частей и их порядок зависят от возраста детей и проставленных задач.

В младшей группе: в начале года может быть только одна часть - дидактическая игра; во второй половине года - до трех часов (обычно работа с демонстрационным материалом, работа с раздаточным материалом, подвижная дидактическая игра).

В средней группе: обычно четыре части (начинается регулярная работа с раздаточным материалом, после которой необходима физкультминутка).

  • В старшей группе: до пяти частей.
  • В подготовительной группе: до семи частей.

Внимание детей сохраняется: 3--4 минуты у младших дошкольников, 5-7 минут у старших дошкольников - это и есть примерная длительность одной части.

Виды физкультминуток

1. Стихотворная форма (детям лучше не проговаривать, а правильно дышать) - обычно проводится во 2-й младшей и средней группах.

2. Набор физических упражнений для мышц рук, ног, спины и др. (лучше выполнять под музыку) - целесообразно проводить в старшей группе.

3. С математическим содержанием (применяются, если занятие не несет большой умственной нагрузки) - чаще применяется в подготовительной группе.

4. Специальная гимнастика (пальчиковая, артикуляционная, для глаз и др.) - регулярно проводится с детьми с проблемами в развитии.

Замечание:

  • если занятие подвижное, физкультминутку можно не проводить;
  • вместо физкультминутки можно проводить релаксацию.

3. Итог занятия

Любое занятие должно быть законченным.

В младшей группе: воспитатель подводит итог после каждой части занятия. («Как хорошо мы поиграли. Давайте соберем игрушки и будем одеваться на прогулку».)

В средней и старшей группах: в конце занятия воспитатель сам подводит итог, приобщая детей. («Что мы сегодня узнали нового? О чем говорили? Во что играли?»). В подготовительной группе: дети сами делают выводы. («Чем мы сегодня занимались?») Организовывается работа дежурных.

Необходимо оценить работу детей (в том числе индивидуально похвалить или сделать замечание).

Методические требования к занятию по математике (зависят от принципов обучения)

  1. Образовательные задачи берутся из разных разделов программы по формированию элементарных математических представлений и комбинируются во взаимосвязи.
  2. Новые задачи подаются небольшими порциями и конкретизируются для данного занятия.
  3. На одном занятии целесообразно решать не более одной новой задачи, остальные на повторение и закрепление.
  4. Знания даются систематично и последовательно в доступ­ной форме.
  5. Используется разнообразный наглядный материал.
  6. Демонстрируется связь полученных знаний с жизнью.
  7. Проводится индивидуальная работа с детьми, осуществляется дифференцированный подход к отбору заданий.
  8. Регулярно осуществляется контроль над уровнем усвоения материала детьми, выявление пробелов в их знаниях и их устранение.
  9. Вся работа имеет развивающую, коррекционно-воспитательную направленность.
  10. Занятия по математике проводятся в первой половине дне в середине недели.
  11. Занятия по математике лучше сочетать с занятиями, не требующими большой умственной нагрузки (по физкультуре, музыке, рисованию).
  12. Можно проводить комбинированные и интегрированные занятия по разным методикам, если задачи сочетаются.
  13. Каждый ребенок должен активно участвовать в каждом занятии, выполнять умственные и практические действия, отра­жать в речи свои знания.

Способы поддержания хорошей работоспособности у детей на занятии

  • Словесная активизация.
  • Чередование различных видов деятельности.
  • Смена наглядного материала.
  • Физкультминутки и релаксация.
  • Трудный новый материал дается через 3-5 минут от начала занятия до 15-18-й минуты.

Навыки работы с раздаточным материалом (начинаем формировать со второй половины второй младшей группы, к концу средней группы желательно сформировать)

  • Бережное отношение к наглядному материалу.
  • Самостоятельная подготовка раздаточного материала к занятию.
  • Выкладывание пособий слева направо, сверху вниз, беря ведущей рукой по одному предмету.
  • Работать с раздаточным материалом только по заданию воспитателя.

Навыки учебной деятельности (начинаем формировать со средней группы, желательно к концу старшей группы сформировать)

  • Соблюдать дисциплину на занятии.
  • Сидеть, сохраняя правильную осанку.
  • Тихо вставать и садиться, подходить к доске.
  • Поднимать руку, только когда знаешь ответ.
  • Отвечать, только когда тебя спросят.
  • Давать ответы четко, громко, адресуя всем детям.
  • Внимательно выслушивать ответы товарищей и уметь их исправить, не повторяясь (дети быстро учатся замечать чужие ошибки, необходимо это правильно использовать).
  • Уметь внимательно слушать задание и осмысливать его.
  • Выполнять задания самостоятельно после указания воспитателя.

Список литературы

1. Баряева Л.Б. Формирование элементарных математических представлений у дошкольников (с проблемами в развитии). СПб., 2012.

2. Бондаренко А.Н. Дидактические игры в детском саду. М., 2015.

3. Готовность детей к школе. Диагностика психического развития и коррекция его неблагоприятных вариантов / Е.А.Бугрименко, {А.Л.Венгер, КЯ.Политое а, Е.Ю.Сушкова М.: МО РФ, 2010.

4. Данилова А.В., Рихтерман Т.Д., Михайлова 3.А. Обучение математике в детском саду. М.: Академия, 2013.

5. Ерофеева Т.И. и др. Математика для дошкольников. М., 2015.

6. Зайцев В.В. Математика для детей дошкольного возраста. М., 2014.