Решение задач в контексте ЕГЭ по теме "Конус"

Разделы: Математика


Цели  урока:

  • Обучающие:
    • формировать умения применять понятия конуса, усечённого конуса и формулы для вычисления площади боковой поверхности, объёма при решении задач в контексте ЕГЭ;
    • рассмотреть задачи на комбинации тел и «найти подход» к решению таких задач.
  • Развивающие:
    • способствовать развитию умений учащихся обобщать полученные знания, проводить анализ синтез, сравнения, делать необходимые выводы при решении задач разного уровня сложности.
    • способствовать развитию умений творческого подхода к решению практической задачи.
  • Воспитательные:
    • обеспечить условия для воспитания положительного интереса к изучаемому предмету через решение практико-ориентированных задач.
    • обеспечить благоприятную психологическую  атмосферу для развития  творческих  способностей.
    • совершенствование математической речи, математического языка.

ХОД УРОКА

1. Организационный этап: Здравствуйте, ребята, садитесь! Начнем урок.

(Приложение 1, слайд №1)

2. Этап проверки домашнего задания и выравнивания знаний:

Предлагаю начать работу на уроке с устного опроса.

  1. Какие фигуры относятся к телам вращения? (слайд №2)
  2. Почему их так называют?
  3. Назвать основные элементы цилиндра, конуса. (слайд №3,4,5)
  4. Какие виды сечений может иметь цилиндр, конус?
  5. Что подразумевается под понятием «площади боковой и полной поверхности» тел вращения?
  6. Формулы для нахождения площади боковой поверхности, площади полной поверхности, объёма цилиндра, конуса, усечённого конуса.(слайд №6)

 

 

Цилиндр

Конус

Усечённый конус

Площадь боковой поверхности

Sбок = 2πRh

Sбок = πRl

Sбок = πl(R + R1)

Площадь полной поверхности

Sпол = 2πRh + 2πR2

Sпол = πRl + πR2

Sпол = πl(R + R1) + πR2 + πRl2

Объём

V= πR2h

V=  πR2h

V=  πh(R2+R12+RR1)

Откройте тетради с письменным домашним заданием. На прошлом уроке вам были заданы 2 задачи для самостоятельного решения. Сейчас проверим правильность выполнения домашнего задания, постараемся устранить в ходе проверки обнаруженные пробелы в знаниях (если такие имеют место!!!).

Задачи письменной  домашней работы

Домашняя работа проверяется фронтально. Обсуждаются вопросы и затруднения при выполнении этих задач.

Задача №1. Осевое сечение цилиндра – квадрат, площадь основания цилиндра равна 16π см2. Найти площадь поверхности цилиндра.
В результате проверки, выясняем, что радиус основания цилиндра равен 4 см, а высота цилиндра – 8 см. Тогда площадь поверхности цилиндра равна 96π см2.

Ответ.  96π см2

Задача №2: В цилиндрический сосуд налили 6 куб. см воды. В воду полностью погрузили деталь. При этом уровень жидкости в сосуде увеличился в 1,5 раза. Найдите объём детали. Ответ выразите в куб. см.
В результате проверки, выясняем, что высота воды в цилиндре  равен 9 см, а произведение  R2= 1 см. Тогда объём детали будет равен 3 см3.

Ответ.  3 см3.

3. «Блиц-опрос»: Устные упражнения:

  1. Высота конуса 4 см, радиус основания – 3 см. Найти образующую конуса. (слайд №7)
  2. Радиус конуса 5 см, образующая – 8 см. Найти боковую поверхность конуса. (слайд №8)
  3. Образующая конуса равна 13 см, радиус основания – 5 см. Найдите высоту конуса. (слайд №9)
  4. Во сколько раз уменьшится объем конуса, если его высоту уменьшить в 3 раза? (слайд №10)
  5. Во сколько раз увеличится объем конуса, если его радиус основания увеличить в 1,5 раза? (слайд №11)
  6. Во сколько раз увеличится площадь боковой поверхности конуса, если его образующую увеличить в 3 раза? (слайд №12)
  7. Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшится в 1,5 раза, а образующая останется прежней? (слайд №13)
  8. Высота конуса равна 6, образующая равна 10. Найдите его объем, деленный на π. (слайд №14)
  9. Конус получается при вращении равнобедренного прямоугольного треугольника  АВС вокруг катета, равного 6. Найдите его объем, деленный на π . (слайд №15)
  10. Радиус основания конуса равен 3, высота равна 4. Найдите площадь полной поверхности конуса, деленную на  π. (слайд №16)
  11. Цилиндр и конус имеют общее основание и общую высоту. Вычислите объем цилиндра, если объем конуса равен 27. (слайд №17)
  12. Объем конуса равен 16. Через середину высоты параллельно основанию конуса проведено сечение, которое является основанием меньшего конуса с той же вершиной. Найдите объем меньшего конуса. (слайд №18)

4. «Тяжело в учении, легко на ЕГЭ». Работа в парах:

Задачи.

  1. Осевое сечение конуса равносторонний треугольник со стороной 10см. Найти площадь боковой поверхности конуса. (слайд №19)
  2. Высота конуса 12 см, образующая – 13 см. Найти площадь полной поверхности конуса.  ( Слайд №19)
  3. Высота конуса равна 2√3 см. Найдите площадь боковой поверхности и площадь осевого сечения конуса, если оно является правильным треугольником. (слайд №19)

5. Задачи по теме «Конус» в формате ЕГЭ (задачи решаем фронтально)

6. Итог урока

– Задачи,  с какими фигурами мы сегодня решали.

7. Домашнее задание: подобрать по теме «Конус» 5 задач из банка данных по математике и решить их.

Дополнительные задачи:

  1. Радиусы оснований усеченного конуса 10√3 и 6√3, а образующая наклонена к плоскости основания под углом 60о. Найти высоту усеченного конуса.
  2. Отношение площадей боковой и полной поверхности конуса равно   Найти угол между образующей и плоскостью основания конуса.

Ребята, спасибо за работу на уроке. Вам я желаю хорошо подготовиться и успешно сдать единый государственный экзамен. Урок окончен.