Цели и задачи:
- знать определения вписанного и центрального углов, знать теорему о вписанном угле, уметь решать задачи нахождение вписанных, центральных углов и дуг на которые опираются эти углы;
- формирование пространственного мышления;
- воспитание самостоятельности.
Ход урока
I. Организационный момент.
На прошлом уроке мы познакомились с понятиями вписанного угла и центрального угла, с теоремой о вписанном угле. Сегодня мы будем применять эти знания для решения задач.
II. Устный счет.
слайд 1.
- Закончите предложение.
- Центральный угол – это… (угол с вершиной в центре окружности).
- Градусная мера дуги – это… (градусная мера соответствующего центрального угла).
- Угол, вписанный в окружность, – это…(угол, вершина которого лежит на окружности, стороны пересекают ее).
- Угол, вписанный в окружность, равен…(половине соответствующего центрального угла).
- Вписанные углы, опирающиеся на одну и ту же дугу…(равны)
- Вписанные углы, опирающиеся на диаметр... (прямые).
- На доске на рисунке показать и назвать углы и дуги, на которые эти углы опираются.
Рисунок 1.
- центральный угол, ответ: ∠АОD, ∠АОВ, ∠ВОD, ∠КОD, ∠ВОК, ∠АОК.
- вписанный угол, ответ: ∠ВКD, ∠АDК, ∠ВАD
- вписанные углы, опирающиеся на одну и ту же дугу, ответ: ∠ВКD и ∠ВАD
III. Проверка домашнего задания.
Проверить и разобрать решение задач №71 и №72 из рабочей тетради к учебнику геометрии.
слайд 2.
№71. Начертите окружность и проведите ее радиусы ОА, ОВ и ОС так, чтобы углы АОВ, ВОС и СОА были равны. Вычислите градусные меры образовавшихся дуг АВ, ВС и СА.
Устно разобрать, чему равны градусные меры получившихся дуг.
АВ=ВС= АС =120°.
№77. Точки М, К и Р делят окружность на дуги, градусные меры которых пропорциональны числам 3, 2 и 7 (считая от точки М к точке К). Вычислите градусные меры углов треугольника МКР.
В рабочей тетради в решении дается подсказка: принимаем градусные меры дуг за 3х°, 2х° и __, что подставили? (7х°).
Так как сумма их градусных мер равна 360°, составим уравнение ____________
Какое уравнение получили?
Проверили решение уравнения.
3х+2х+7х=360
12х=360
х=360:12
х=30
МК=3х=90, РК=2х=60, МР=7х=210
Используя свойство вписанных углов, находим величины углов треугольника МКР:
∠ Р=45°, ∠ М=30°, ∠К=105°.
IV. Решение задач
1. Задачи по чертежам. слайд 3:
- Решите задачи устно найдите х:
Разобрать, почему в задаче 1 x= 60°, а в задаче 2 x = 80°.
На основании какого свойства? ( свойство вписанного угла: угол, вписанный в окружность, равен половине соответствующего центрального угла).
Постройте в тетради четыре одинаковых окружности.
- Скопируйте задания с рисунков в тетрадь и по данным задач 3 и 4. Презентация слайд 4. См. рисунок 3, найдите х.
Решение задачи 3: 360° – 80° = 280°,
x = 280°:2 = 140°
Решение задачи 4: 360° – 110° = 250°,
x = 250°:2 = 125°
- Скопируйте задания с рисунков в тетрадь и по данным задач 5 и 6. слайд 5. См. рисунок 4 найдите х.
Решение задачи 5: ∠С = 90°,
Какое свойство вписанного угла применяем?
(Вписанные углы, опирающиеся на диаметр прямые)
∠А = 90° – 37°= 53°.
Решение задачи 6: в треугольнике АВD∠В = 90°, ∠CВD =30° + 90° = 120°.
2) Задача №79 в рабочей тетради.
Около равнобедренного треугольника АВС описана окружность. Его основание АС стягивает дугу, градусная мера которой равна 140°. Вычислите градусные меры всех углов треугольника АВС.
В рабочей тетради построили чертеж к задаче Рисунок 7.
Решение.
Какой угол треугольника АВС можно найти?
Можно найти ∠B, т.к. это вписанный угол, который опирается на дугу АС.
∠В = 140°:2 = 70°,
Какое свойство равнобедренного треугольника можно применить?
В равнобедренном треугольнике углы при основании равны.
∠А = ∠С = (180° – 70°) : 2 = 110°:2 = 55°.
Ответ: ∠В = 70°, ∠А = ∠С = 55°.
V. Домашнее задание.
П.107, повторить теорию по теме «Углы, вписанные в окружность»
Решить задачи №80, 82 в рабочей тетради.
VI. Самостоятельная работа на карточках по готовым чертежам.
слайд 6.
Учащиеся получают карточки с заданиями. См. рисунок 5.
VII. Проверка самостоятельной работы.
слайд 7.