Урок в 10-м классе.
Тема: «Полупроводники. Электрический ток через контакт полупроводников р- и n-типов. Полупроводниковый диод. Транзисторы».
Цели:
- образовательные: сформировать представление о свободных носителях электрического заряда в полупроводниках при наличии примесей с точки зрения электронной теории и опираясь на эти знания выяснить физическую сущность p-n-перехода; научить учащихся объяснять работу полупроводниковых приборов, опираясь на знания о физической сущности p-n-перехода;
- развивающие: развивать физическое мышление учащихся, умение самостоятельно формулировать выводы, расширять познавательный интерес, познавательную активность;
- воспитательные: продолжить формирование научного мировоззрения школьников.
Оборудование: презентация по теме: «Полупроводники. Электрический ток через контакт полупроводников р- и n-типов. Полупроводниковый диод. Транзистор», мультимедийный проектор.
Ход урока
I. Организационный момент.
II. Изучение нового материала.
Слайд 1.
Слайд 2. Полупроводник – вещество, у которого удельное сопротивление может изменяться в широких пределах и очень быстро убывает с повышением температуры, а это значит, что электрическая проводимость (1/R) увеличивается.
Наблюдается у кремния, германия, селена и у некоторых соединений.
Слайд 3.
Механизм проводимости у полупроводников
Слайд 4.
Кристаллы полупроводников имеют атомную кристаллическую решетку, где внешние Слайд 5.электроны связаны с соседними атомами ковалентными связями.
При низких температурах у чистых полупроводников свободных электронов нет и они ведут себя как диэлектрики.
Полупроводники чистые (без примесей)
Если полупроводник чистый(без примесей), то он обладает собственной проводимостью, которая невелика.
Собственная проводимость бывает двух видов:
Слайд 6. 1) электронная (проводимость "n " – типа)
При низких температурах в полупроводниках все электроны связаны с ядрами и сопротивление большое; при увеличении температуры кинетическая энергия частиц увеличивается, рушатся связи и возникают свободные электроны – сопротивление уменьшается.
Свободные электроны перемещаются противоположно вектору напряженности электрического поля.
Электронная проводимость полупроводников обусловлена наличием свободных электронов.
1017 1024
Слайд 7.
2) дырочная (проводимость " p" – типа)
При увеличении температуры разрушаются ковалентные связи, осуществляемые валентными электронами, между атомами и образуются места с недостающим электроном – "дырка".
Она может перемещаться по всему кристаллу, т.к. ее место может замещаться валентными электронами. Перемещение "дырки" равноценно перемещению положительного заряда.
Перемещение дырки происходит в направлении вектора напряженности электрического поля.
Кроме нагревания, разрыв ковалентных связей и возникновение собственной проводимости полупроводников могут быть вызваны освещением (фотопроводимость) и действием сильных электрических полей. Поэтому полупроводники обладают ещё и дырочной проводимостью.
Общая проводимость чистого полупроводника складывается из проводимостей "p" и "n" -типов и называется электронно-дырочной проводимостью.
Полупроводники при наличии примесей
У таких полупроводников существует собственная + примесная проводимость.
Наличие примесей проводимость сильно увеличивает.
При изменении концентрации примесей изменяется число носителей электрического тока – электронов и дырок.
Возможность управления током лежит в основе широкого применения полупроводников.
Существуют:
Слайд 8. 1) донорные примеси (отдающие) – являются дополнительными поставщиками электронов в кристаллы полупроводника, легко отдают электроны и увеличивают число свободных электронов в полупроводнике.
Слайд 9. Это проводники " n " – типа, т.е. полупроводники с донорными примесями, где основной носитель заряда – электроны, а неосновной – дырки.
Такой полупроводник обладает электронной примесной проводимостью. Например – мышьяк.
Слайд 10. 2) акцепторные примеси (принимающие) – создают "дырки" , забирая в себя электроны.
Это полупроводники " p "- типа, т.е. полупроводники с акцепторными примесями, где основной носитель заряда – дырки, а неосновной – электроны.
Такой полупроводник обладает дырочной примесной проводимостью. Слайд 11. Например – индий. Слайд 12.
Рассмотрим, какие физические процессы происходят при контакте двух полупроводников с различным типом проводимости, или, как говорят, в р—n-переходе.
Слайд 13-16.
Электрические свойства "p-n" перехода
"p-n" переход (или электронно-дырочный переход) – область контакта двух полупроводников, где происходит смена проводимости с электронной на дырочную (или наоборот).
В кристалле полупроводника введением примесей можно создать такие области. В зоне контакта двух полупроводников с различными проводимостями будет проходить взаимная диффузия. электронов и дырок и образуется запирающий электрический слой. Электрическое поле запирающего слоя препятствует дальнейшему переходу электронов и дырок через границу. Запирающий слой имеет повышенное сопротивление по сравнению с другими областями полупроводника.
Внешнее электрическое поле влияет на сопротивление запирающего слоя.
При прямом (пропускном) направлении внешнего электрического поля электрический ток проходит через границу двух полупроводников.
Т.к. электроны и дырки движутся навстречу друг другу к границе раздела, то электроны, переходя границу, заполняют дырки. Толщина запирающего слоя и его сопротивление непрерывно уменьшаются.
Пропускной режим р-n перехода:
При запирающем (обратном) направлении внешнего электрического поля электрический ток через область контакта двух полупроводников проходить не будет.
Т.к. электроны и дырки перемещаются от границы в противоположные стороны, то запирающий слой утолщается, его сопротивление увеличивается.
Запирающий режим р-n перехода:
Таким образом, электронно-дырочный переход обладает односторонней проводимостью.
Полупроводниковые диоды
Полупроводник с одним "p-n" переходом называется полупроводниковым диодом.
– Ребята, запишите новую тему: «Полупроводниковый диод».
– Какой там ещё идиот?», – с улыбкой переспросил Васечкин.
– Не идиот, а диод! – ответил учитель, – Диод, значит имеющий два электрода, анод и катод. Вам ясно?
– А у Достоевского есть такое произведение – «Идиот», – настаивал Васечкин.
– Да, есть, ну и что? Вы на уроке физики, а не литературы! Прошу больше не путать диод с идиотом!
Слайд 17–21.
При наложении эл.поля в одном направлении сопротивление полупроводника велико, в обратном – сопротивление мало.
Полупроводниковые диоды основные элементы выпрямителей переменного тока.
Слайд 22–25.
Транзисторами называют полупроводниковые приборы, предназначенные для усиления, генерирования и преобразования электрических колебаний.
Полупроводниковые транзисторы – также используются свойства" р-n "переходов, - транзисторы используются в схемотехнике радиоэлектронных приборов.
В большую «семью» полупроводниковых приборов, называемых транзисторами, входят два вида: биполярные и полевые. Первые из них, чтобы как – то отличить их от вторых, часто называют обычными транзисторами. Биполярные транзисторы используются наиболее широко. Именно с них мы пожалуй и начнем. Термин «транзистор» образован из двух английских слов: transfer – преобразователь и resistor – сопротивление. В упрощенном виде биполярный транзистор представляет собой пластину полупроводника с тремя (как в слоеном пироге) чередующимися областями разной электропроводности (рис. 1), которые образуют два р – n перехода. Две крайние области обладают электропроводностью одного типа, средняя – электропроводностью другого типа. У каждой области свой контактный вывод. Если в крайних областях преобладает дырочная электропроводность, а в средней электронная (рис. 1, а), то такой прибор называют транзистором структуры p – n – р. У транзистора структуры n – p – n, наоборот, по краям расположены области с электронной электропроводностью, а между ними – область с дырочной электропроводностью (рис. 1, б).
При подаче на базу транзистора типа n-p-n положительного напряжения он открывается, т. е. сопротивление между эмиттером и коллектором уменьшается, а при подаче отрицательного, наоборот – закрывается и чем сильнее сила тока, тем сильнее он открывается или закрывается. Для транзисторов структуры p-n-p все наоборот.
Основой биполярного транзистора (рис. 1) служит небольшая пластинка германия или кремния, обладающая электронной или дырочной электропроводимостью, то есть n-типа или p-типа. На поверхности обеих сторон пластинки наплавляют шарики примесных элементов. При нагревании до строго определенной температуры происходи диффузия (проникновение) примесных элементов в толщу пластинки полупроводника. В результате в толще пластинки возникают две области, противоположные ей по электропроводимости. Пластинка германия или кремния p-типа и созданные в ней области n-типа образуют транзистор структуры n-p-n (рис. 1,а), а пластинка n-типа и созданные в ней области p-типа — транзистор структуры p-n-p (рис. 1,б).
Независимо от структуры транзистора его пластинку исходного полупроводника называют базой (Б), противоположную ей по электропроводимости область меньшего объема — эмиттером (Э), а другую такую же область большего объема — коллектором (К). Эти три электрода образуют два p-n перехода: между базой и коллектором — коллекторный, а между базой и эмиттером — эмиттерный. Каждый из них по своим электрическим свойствам аналогичен p-n переходам полупроводниковых диодов и открывается при таких же прямых напряжениях на них.
Условные графические обозначения транзисторов разных структур отличаются лишь тем, что стрелка, символизирующая эмиттер и направление тока через эмиттерный переход, у транзистора структуры p-n-p обращена к базе, а у транзистора n-p-n — от базы.
Слайд 26–29.
III. Первичное закрепление.
- Какие вещества называются полупроводниками?
- Какую проводимость называют электронной?
- Какая проводимость наблюдается ещё у полупроводников?
- О каких примесях теперь вам известно?
- В чем заключается пропускной режим p-n- перехода.
- В чем заключается запирающий режим p-n- перехода.
- Какие полупроводниковые приборы вам известны?
- Где и для чего используют полупроводниковые приборы?
IV. Закрепление изученного
- Как меняется удельное сопротивление полупроводников: при нагревании? При освещении?
- Будет ли кремний сверхпроводящим, если его охладить до температуры, близкой к абсолютному нулю? (нет, с понижением температуры сопротивление кремния увеличивается).
V. Домашнее задание.
§ 113-116 – учить, пов. § 109–112.