Тип урока: урок изучения нового материала.
ПрезентацияЦели урока:
Учащиеся должны знать:
- что называется угловым коэффициентом прямой;
- углом между прямой и осью Ох;
- в чем состоит геометрический смысл производной;
- уравнение касательной к графику функции;
- способ построения касательной к параболе;
- уметь применять теоретические знания на практике.
Задачи урока:
Образовательные: создать условия для овладения учащимися системы знаний, умений и навыков с понятиями механический и геометрический смысл производной.
Воспитательные: формировать у учащихся научное мировоззрение.
Развивающие: развивать у учащихся познавательный интерес, творческие способности, волю, память, речь, внимание, воображение, восприятие.
Методы организации учебно-познавательной деятельности:
- наглядные;
- практические;
- по мыслительной деятельности: индуктивный;
- по усвоению материала: частично-поисковый, репродуктивный;
- по степени самостоятельности: лабораторная работа;
- стимулирующие: поощрения;
- контроля: устный фронтальный опрос.
План урока
- Устные упражнения (найти производную)
- Сообщение ученика на тему “Причины появления математического анализа”.
- Изучение нового материала
- Физ. Минутка.
- Решение заданий.
- Лабораторная работа.
- Подведение итогов урока.
- Комментирование домашнего задания.
Оборудование: мультимедийный проектор (презентация), карточки (лабораторная работа).
Ход урока
“Человек лишь там чего – то добивается, где он верит в свои силы”
Л. Фейербах
I. Организационный момент.
Организация класса в течение всего урока, готовность учащихся к уроку, порядок и дисциплина.
Постановка целей учения перед учащимися, как на весь урок, так и на отдельные его этапы.
Определить значимость изучаемого материала как в данной теме, так и во все курсе.
Устный счет
1. Найдите производные:
( ) ' () ' ()'
' , ()' , (4sin x)', (cos2x)', (tg x)', '
2. Логический тест.
а) Вставить пропущенное выражение.
5х3-6х | 15х2-6 | 30х |
2sinx | 2cosx … | |
cos2x | … … |
II. Сообщение ученика на тему “Причины появления математического анализа”.
Общее направление развития науки, в конечном счете, обусловлено требованиями практики человеческой деятельности. Существование древних государств со сложной иерархической системой управления было бы невозможно без достаточного развития арифметики и алгебры, ибо сбор податей, организация снабжения армии, строительство дворцов и пирамид, создание оросительных систем требовали выполнения сложных расчетов. В эпоху Возрождения расширяются связи между различными частями средневекового мира, развиваются торговля и ремесла. Начинается быстрый подъем технического уровня производства, промышленное применение получают новые источники энергии, не связанные с мускульными усилиями человека или животных. В XI-XII столетии появляются сукновальные и ткацкие станки, а в середине XV - печатный станок. В связи с потребностью в быстром развитии общественного производства в этот период изменяется сущность естественных наук, носивших со времен древности описательный характер. Целью естествознания становится углубленное изучение естественных процессов, а не предметов. Описательному естествознанию древности соответствовала математика, оперировавшая постоянными величинами. Необходимо было создать математический аппарат, который давал бы описание не результата процесса, а характера его течения и свойственных ему закономерностей. В итоге к концу XII столетия, Ньютон в Англии и Лейбниц в Германии завершили первый этап создания математического анализа. Что же такое “математический анализ”? Как можно охарактеризовать, предсказать особенности протекания любого процесса? Использовать эти особенности? Глубже проникать в сущность того или иного явления?
III. Изучение нового материала.
Пойдем по пути Ньютона и Лейбница и посмотрим, каким способом можно анализировать процесс, рассматривая его как функцию времени.
Введем несколько понятий, которые помогут нам в дальнейшем.
Графиком линей ной функции y=kx+ b является прямая, число k называют угловым коэффициентом прямой. k=tg, где – угол прямой, то есть угол между этой прямой и положительным направлением оси Ох.
Рисунок 1
Рассмотрим график функции у=f(х). Проведем секущую через любые две точки, например, секущую АМ. (Рис.2)
Угловой коэффициент секущей k=tg. В прямоугольном треугольнике АМС <МАС = (объясните почему?). Тогда tg = = , что с точки зрения физики есть величина средней скорости протекания любого процесса на данном промежутке времени, например, скорости изменения расстояния в механике.
Рисунок 2
Рисунок 3
Сам термин “скорость” характеризует зависимость изменения одной величины от изменения другой, и последняя необязательно должна быть временем.
Итак, тангенс угла наклона секущей tg = .
Нас интересует зависимость изменения величин в более короткий промежуток времени. Устремим приращение аргумента к нулю. Тогда правая часть формулы – производная функции в точке А (объясните почему). Если х –> 0, то точка М движется по графику к точке А, значит прямая АМ приближается к некоторой прямой АВ, которая является касательной к графику функции у = f(х) в точке А. (Рис.3)
Угол наклона секущей стремится к углу наклона касательной.
Геометрический смысл производной состоит в том, что значение производной в точке равно угловому коэффициенту касательной к графику функции в точке.
Механический смысл производной.
Тангенс угла наклона касательной есть величина, показывающая мгновенную скорость изменения функции в данной точке, то есть новая характеристика изучаемого процесса. Эту величину Лейбниц назвал производной, а Ньютон говорил, что производной называется сама мгновенная скорость.
IV. Физкультминутка.
V. Решение заданий.
№91(1) стр 91 – показать на доске.
Угловой коэффициент касательной к кривой f(х) = х3 в точке х0 – 1 есть значение производной этой функции при х = 1. f’(1) = 3х2; f’(1) = 3.
Ответ: 3.
№91 (3,5) – под диктовку.
№92(1) – на доске по желанию.
№ 92 (3) – самостоятельно с устной проверкой.
№92 (5) – за доской.
Ответы: 450, 1350, 1,5 е2.
VI. Лабораторная работа.
Цель: отработка понятия “механический смысл производной”.
Приложения производной к механике.
Задан закон прямолинейного движения точки х = х(t), t[0;10].
Найдите:
- Среднюю скорость движения на указанном отрезке времени;
- Скорость и ускорение в момент времени t04
- Моменты остановки; продолжает ли точка после момента остановки двигаться в том же направлении или начинает двигаться в противоположном направлении;
- Наибольшую скорость движения на указанном отрезке времени.
Работа выполняется по 12 вариантам, задания дифференцированы по уровню сложности ( первый вариант - наименьший уровень сложности).
- x (t) = t2-3 t, t0 = 4.
- x (t) = t3+2 t, t0= 1.
- x (t) = 2t3- t2, t
- x (t) = t3-2 t2 +1, t0= 2.
- x (t) = t4- t2 +2, t0= 0,5.
- x (t) = 2t3-2,5 t2 +3 t2 + 1, t0= 1.
- x (t) = (t-3)(t-t2), t0= 2.
- x (t) = (t+2)( t2 –t +5), t0= 4.
- x (t) = (t-1)3, t0= 3.
- x (t) = t4+ t3+ t2 + 4 t, t0= 0,5.
- x (t) = t4+ t3+ t2 + 2 t, t0= 1.
- x (t) =, t0= 4.
Перед началом работы беседа по вопросам:
- Каков физический смысл производной перемещения? (Скорость).
- Можно ли найти производную скорости? Используется ли эта величина в физике? Как она называется? (Ускорение).
- Мгновенная скорость равна нулю. Что можно сказать о движении тела в это момент? (Это момент остановки).
- Каков физический смысл следующих высказываний: производная движения равна нулю в точке t0; при переходе через точку t0 производная меняет знак? ( Тело останавливается; меняется направление движения на противоположное).
Образец выполнения работы учащимся.
х(t)= t3-2 t2 +1, t0= 2.
- Средняя скорость движения vср= = х(10)-х(0)=1000-2·100+1-1=1200
- v=х’(t) = t; v(2)= 3· 4 - 4·2=12-8=4
- а = v’(t) = 6 t – 4; а(2) = 6·2-4=12-4=8.
- v(t)=0, 3t2 -4t=0, t(3t -4)=0
- t1=0, t2=
t =10-0=10
vср==120.
Рисунок 4
В противоположном направлении.
Начертим схематично график скорости. Наибольшая скорость достигается в точке
t=10, v (10) =3· 102-4· 10 =300-40=260
Рисунок 5
VII. Подведение итогов урока
1) В чем состоит геометрический смысл
производной?
2) В чем состоит механический смысл производной?
3) Сделайте вывод о своей работе.
VIII. Комментирование домашнего задания.
Стр.90. №91(2,4,6), №92(2,4,6,), стр. 92 №112.
Используемая литература
- Учебник Алгебра и начала анализа.
Авторы: Ю.М. Колягин, М.В. Ткачева, Н.Е. Федорова, М.И. Шабунина.
Под редакцией А. Б. Жижченко. - Алгебра 11 класс. Поурочные планы по учебнику Ш. А. Алимова, Ю. М. Колягина, Ю. В. Сидорова. Часть 1.
- Интернет-ресурсы: http://orags.narod.ru/manuals/html/gre/12.jpg