Тема урока "Геометрический смысл производной"

Разделы: Математика


Тип урока: урок изучения нового материала.

Презентация

Цели урока:

Учащиеся должны знать:

  • что называется угловым коэффициентом прямой;
  • углом между прямой и осью Ох;
  • в чем состоит геометрический смысл производной;
  • уравнение касательной к графику функции;
  • способ построения касательной к параболе;
  • уметь применять теоретические знания на практике.

Задачи урока:

Образовательные: создать условия для овладения учащимися системы знаний, умений и навыков с понятиями механический и геометрический смысл производной.

Воспитательные: формировать у учащихся научное мировоззрение.

Развивающие: развивать у учащихся познавательный интерес, творческие способности, волю, память, речь, внимание, воображение, восприятие.

Методы организации учебно-познавательной деятельности:

  • наглядные;
  • практические;
  • по мыслительной деятельности: индуктивный;
  • по усвоению материала: частично-поисковый, репродуктивный;
  • по степени самостоятельности: лабораторная работа;
  • стимулирующие: поощрения;
  • контроля: устный фронтальный опрос.

План урока

  1. Устные упражнения (найти производную)
  2. Сообщение ученика на тему “Причины появления математического анализа”.
  3. Изучение нового материала
  4. Физ. Минутка.
  5. Решение заданий.
  6. Лабораторная работа.
  7. Подведение итогов урока.
  8. Комментирование домашнего задания.

Оборудование: мультимедийный проектор (презентация), карточки (лабораторная работа).

Ход урока

“Человек лишь там чего – то добивается, где он верит в свои силы”

Л. Фейербах

I. Организационный момент.

Организация класса в течение всего урока, готовность учащихся к уроку, порядок и дисциплина.

Постановка целей учения перед учащимися, как на весь урок, так и на отдельные его этапы.

Определить значимость изучаемого материала как в данной теме, так и во все курсе.

Устный счет

1. Найдите производные:

( ) ' () ' ()'

' , ()' , (4sin x)', (cos2x)', (tg x)', '

2. Логический тест.

а) Вставить пропущенное выражение.

3-6х 15х2-6 30х
2sinx 2cosx  
cos2x … …  

II. Сообщение ученика на тему “Причины появления математического анализа”.

Общее направление развития науки, в конечном счете, обусловлено требованиями практики человеческой деятельности. Существование древних государств со сложной иерархической системой управления было бы невозможно без достаточного развития арифметики и алгебры, ибо сбор податей, организация снабжения армии, строительство дворцов и пирамид, создание оросительных систем требовали выполнения сложных расчетов. В эпоху Возрождения расширяются связи между различными частями средневекового мира, развиваются торговля и ремесла. Начинается быстрый подъем технического уровня производства, промышленное применение получают новые источники энергии, не связанные с мускульными усилиями человека или животных. В XI-XII столетии появляются сукновальные и ткацкие станки, а в середине XV - печатный станок. В связи с потребностью в быстром развитии общественного производства в этот период изменяется сущность естественных наук, носивших со времен древности описательный характер. Целью естествознания становится углубленное изучение естественных процессов, а не предметов. Описательному естествознанию древности соответствовала математика, оперировавшая постоянными величинами. Необходимо было создать математический аппарат, который давал бы описание не результата процесса, а характера его течения и свойственных ему закономерностей. В итоге к концу XII столетия, Ньютон в Англии и Лейбниц в Германии завершили первый этап создания математического анализа. Что же такое “математический анализ”? Как можно охарактеризовать, предсказать особенности протекания любого процесса? Использовать эти особенности? Глубже проникать в сущность того или иного явления?

III. Изучение нового материала.

Пойдем по пути Ньютона и Лейбница и посмотрим, каким способом можно анализировать процесс, рассматривая его как функцию времени.

Введем несколько понятий, которые помогут нам в дальнейшем.

Графиком линей ной функции y=kx+ b является прямая, число k называют угловым коэффициентом прямой. k=tg, где – угол прямой, то есть угол между этой прямой и положительным направлением оси Ох.

Рисунок 1

Рассмотрим график функции у=f(х). Проведем секущую через любые две точки, например, секущую АМ. (Рис.2)

Угловой коэффициент секущей k=tg. В прямоугольном треугольнике АМС <МАС = (объясните почему?). Тогда tg = = ,  что с точки зрения физики есть величина средней скорости протекания любого процесса на данном промежутке времени, например, скорости изменения расстояния в механике.

 

Рисунок 2

Рисунок 3

Сам термин “скорость” характеризует зависимость изменения одной величины от изменения другой, и последняя необязательно должна быть временем.

Итак, тангенс угла наклона секущей tg = .

Нас интересует зависимость изменения величин в более короткий промежуток времени. Устремим приращение аргумента к нулю. Тогда правая часть формулы – производная функции в точке А (объясните почему). Если х –> 0, то точка М движется по графику к точке А, значит прямая АМ приближается к некоторой прямой АВ, которая является касательной к графику функции у = f(х) в точке А. (Рис.3)

Угол наклона секущей стремится к углу наклона касательной.

Геометрический смысл производной состоит в том, что значение производной в точке равно угловому коэффициенту касательной к графику функции в точке.

Механический смысл производной.

Тангенс угла наклона касательной есть величина, показывающая мгновенную скорость изменения функции в данной точке, то есть новая характеристика изучаемого процесса. Эту величину Лейбниц назвал производной, а Ньютон говорил, что производной называется сама мгновенная скорость.

IV. Физкультминутка.

V. Решение заданий.

№91(1) стр 91 показать на доске.

Угловой коэффициент касательной к кривой f(х) = х3 в точке х0 – 1 есть значение производной этой функции при х = 1. f’(1) = 3х2; f’(1) = 3.

Ответ: 3.

№91 (3,5) – под диктовку.

№92(1) – на доске по желанию.

№ 92 (3) – самостоятельно с устной проверкой.

№92 (5) – за доской.

Ответы: 450, 1350, 1,5 е2.

VI. Лабораторная работа.

Цель: отработка понятия “механический смысл производной”.

Приложения производной к механике.

Задан закон прямолинейного движения точки х = х(t), t[0;10].

Найдите:

  1. Среднюю скорость движения на указанном отрезке времени;
  2. Скорость и ускорение в момент времени t04
  3. Моменты остановки; продолжает ли точка после момента остановки двигаться в том же направлении или начинает двигаться в противоположном направлении;
  4. Наибольшую скорость движения на указанном отрезке времени.

Работа выполняется по 12 вариантам, задания дифференцированы по уровню сложности ( первый вариант - наименьший уровень сложности).

  1. x (t) = t2-3 t, t0 = 4.
  2. x (t) = t3+2 t, t0= 1.
  3. x (t) = 2t3- t2, t
  4. x (t) = t3-2 t2 +1, t0= 2.
  5. x (t) = t4- t2 +2, t0= 0,5.
  6. x (t) = 2t3-2,5 t2 +3 t2 + 1, t0= 1.
  7. x (t) = (t-3)(t-t2), t0= 2.
  8. x (t) = (t+2)( t2 –t +5), t0= 4.
  9. x (t) = (t-1)3, t0= 3.
  10. x (t) = t4+ t3+ t2 + 4 t, t0= 0,5.
  11. x (t) = t4+ t3+ t2 + 2 t, t0= 1.
  12. x (t) =, t0= 4.

Перед началом работы беседа по вопросам:

  1. Каков физический смысл производной перемещения? (Скорость).
  2. Можно ли найти производную скорости? Используется ли эта величина в физике? Как она называется? (Ускорение).
  3. Мгновенная скорость равна нулю. Что можно сказать о движении тела в это момент? (Это момент остановки).
  4. Каков физический смысл следующих высказываний: производная движения равна нулю в точке t0; при переходе через точку t0 производная меняет знак? ( Тело останавливается; меняется направление движения на противоположное).

Образец выполнения работы учащимся.

х(t)= t3-2 t2 +1, t0= 2.

  1. Средняя скорость движения vср=
  2. = х(10)-х(0)=1000-2·100+1-1=1200
  3. t =10-0=10

    vср==120.

  4. v=х’(t) = t; v(2)= 3· 4 - 4·2=12-8=4
  5. а = v’(t) = 6 t – 4; а(2) = 6·2-4=12-4=8.
  6. v(t)=0, 3t2 -4t=0, t(3t -4)=0
  7. t1=0, t2=

Рисунок 4

В противоположном направлении.

Начертим схематично график скорости. Наибольшая скорость достигается в точке

t=10, v (10) =3· 102-4· 10 =300-40=260

Рисунок 5

VII. Подведение итогов урока

1) В чем состоит геометрический смысл производной?
2) В чем состоит механический смысл производной?
3) Сделайте вывод о своей работе.

VIII. Комментирование домашнего задания.

Стр.90. №91(2,4,6), №92(2,4,6,), стр. 92 №112.

Используемая литература

  • Учебник Алгебра и начала анализа.
    Авторы: Ю.М. Колягин, М.В. Ткачева, Н.Е. Федорова, М.И. Шабунина.
    Под редакцией А. Б. Жижченко.
  • Алгебра 11 класс. Поурочные планы по учебнику Ш. А. Алимова, Ю. М. Колягина, Ю. В. Сидорова. Часть 1.
  • Интернет-ресурсы: http://orags.narod.ru/manuals/html/gre/12.jpg