Урок по теме "Решение квадратных уравнений". 8-й класс

Разделы: Математика, Конкурс «Презентация к уроку»

Класс: 8


Презентация к уроку

Загрузить презентацию (141 кБ)


Цели урока:

  • составить алгоритм решения квадратных уравнений по формулам;
  • научить решать квадратные уравнения;
  • совершенствовать умения действовать в соответствии с составленным алгоритмом;
  • развивать коммуникативные навыки, навыки самоконтроля результатов учебной деятельности.

Оборудование: карточки-инструкции «Квадратные уравнения», карточки для проведения рефлексии, компьютер, проектор, презентация Power Point.

План урока:

1) Тема урока. Постановка целей урока.
2) Актуализация знаний: коэффициенты квадратного уравнения, дискриминант, число корней. (Самостоятельная работа. Самоконтроль результатов).
3) Составление опорной схемы действий (Работа в парах. Фронтальная работа).
4) Практикум. Решение уравнений по схеме. (Индивидуальная работа. Самоконтроль).
5) Практикум по решению уравнений. (Работа в парах. Самоконтроль и взаимоконтроль учебной деятельности).
6) Подведение итогов. Рефлексия.
7) Домашнее задание.

ХОД УРОКА

I. Организационный момент. Постановка целей урока

Учитель. Для решения многих задач в математике, физике и технике необходимо уметь решать различные квадратные уравнения. На прошлом уроке были выведены формулы для вычисления дискриминанта и корней квадратного уравнения. Вы научились находить дискриминант и определять число корней уравнения. Тема сегодняшнего урока «Решение квадратных уравнений по формуле». Сформулируйте цель урока.

(Учащиеся формулируют образовательную цель урока – Научиться решать квадратные уравнения по формулам). Слайд 2.

II. Актуализация знаний

Самостоятельная работа с последующей проверкой.

1) Выпишите коэффициенты квадратного уравнения:

Вариант 1.

а) 14у2 – 5у – 1 = 0,
б) 1 – 18р + 81р2 = 0.

Вариант 2.

а) 16х2 – 8х + 1 = 0,
б) 18 + 3у2у = 0.

2) Вычислите дискриминант квадратного уравнения и укажите число его корней:

Вариант 1.

а) 2х2 + 3х + 1 = 0,
б) 2х2 + х + 2 = 0.

Вариант 2.

а) 9х2 + 6х + 1 = 0,
б) х2 + 5х – 6 = 0.

Проверка. Слайд 3, слайд 4.

III. Составление схемы действий.

Учитель предлагает учащимся составить схему решения уравнения 5х2 – 8х + 3 = 0.

1 этап – работа в парах. (3-4 минуты).
2 этап – фронтальная работа. Подведение итогов парной работы, составление общей схемы, учитывающей все этапы решения. Схема записывается (на доске и в тетрадях).

Примерный вариант алгоритма может выглядеть так:

1) Выписываем коэффициенты уравнения: а = 5, b = – 8, с = 3.

2) Записываем формулу дискриминанта: D = b2 – 4ac.

3) Вычисляем дискриминант: D = (– 8)2 – 4 • 5 • 3 = 64 – 60 = 4.

4) Сравниваем дискриминант с нулем и определяем число корней уравнения: D > 0, уравнение имеет два корня.

5) Находим корень из дискриминанта: = = 2.

6) Записываем формулы корней: х1 = , х2 = .

7) b = – 8, – b = 8.

8) Находим по формулам корни уравнения: .

9) Пишем ответ.

IV. Формирование навыков применения алгоритма. (Практикум. Самостоятельная работа).

Задание. Используя составленную схему и карточку – инструкцию (Приложение 1), решить уравнение:

2у2 – 9у + 10 = 0 (№ 534 (г), [1])

Каждый этап решения контролируется: слайд 5.

V. Практикум. Формирование навыков решения уравнений.

Учащиеся работают в парах по вариантам. Один ученик (1 вариант) решает и проговаривает решение вслух, второй слушает, дополняет, исправляет. Потом ученики меняются ролями.

Задание.

Вариант I.

у2 – 11у – 152 = 0 (№ 535 (д), [1])

Вариант II.

2 + 7р – 30 = 0 (№ 536 (б), [1])

Самопроверка по готовому решению. Слайд 6.

VI. Рефлексия

Учащиеся заполняют таблицу на карточке (Приложение 2). В соответствующей ячейке таблице ставится «галочка» или знак «+».

  Нет Не очень
хорошо
Хорошо Отлично, без ошибок
Знаю формулы для решения уравнений        
Понимаю, как решать уравнения. Знаю алгоритм.        
Умею решать квадратные уравнения.        

VII. Домашнее задание: п. 22 (1 часть), № 533 (б), № 536 (а,б), [1].

Литература.

1) Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. Алгебра, 8 класс: учебник для общеобразовательных учреждений (под ред. Теляковского С.А.) – М: Просвещение, 2007.
2) Миндюк М.Б., Миндюк Н.Г. Разноуровневые дидактические материалы по алгебре. 8 класс. – М: издательский дом «Генжер», 1995.