Урок математики по теме "Сумма углов треугольника"

Разделы: Математика


Цели урока:

  • познакомить учащихся с теоремой о сумме углов треугольника, провести классификацию треугольников по углам;
  • рассмотреть применение теоремы к решению задач.

Задачи урока:

Обучающая:

  • сформулировать и рассмотреть план доказательства теоремы о сумме углов треугольника;
  • провести классификацию треугольников по углам;
  • рассмотреть задачи на применение доказанного утверждения.

Развивающая: умение анализировать, обобщать полученные знания, развивать математическую речь.

Воспитывающая:

  • воспитывать познавательную активность, культуру общения;
  • воспитывать уважение к историческому наследию в области математики.

Тип урока: частично поисковый.

Метод: исследование с применением теоретических знаний.

Оборудование:

  • мультипроектор;
  • презентация;
  • раздаточный материал, задание – карточка для отработки теоремы при решении задач.

Межпредметные связи: история.

Применение здоровьесберегающих технологий на уроке:

  • смена видов деятельности;
  • развитие слухового и зрительного анализаторов у каждого ребёнка.

План урока:

1. Организационный момент.

Здравствуйте, садитесь. (Презентация. Слайд 1)

Девиз:

Да, путь познания не гладок,
Но знаем мы со школьных лет,
Загадок больше, чем отгадок,
И поискам предела нет.

2. Актуализация знаний.

Вспомним всё, что понадобится сегодня на уроке.

1)

DBE – развёрнутый.

DBE = 180°

Слайд 2.

2) Свойства равнобедренного треугольника. Hайти 1 .

Слайд 3


1 = 70°

Сформулируйте утверждение обратное свойству равнобедренного треугольника.

3) свойства параллельных прямых.

Слайд 4


2 = 43° 1 = 60°

– Как накрест лежащие углы.

4) Вводная задача. Слайд 5

Дано:

ABF – равнобедренный

B = 30°, AF BD,

BD – биссектриса CBF

Найти:

сумму углов ABF

РЕШЕНИЕ:

Случайно ли сумма углов ABF оказалась равной 180° или этим свойством обладает любой треугольник? (У любого треугольника сумма углов равна 180°.)

Это утверждение носит название теоремы о сумме углов треугольника.

Итак, тема урока: Сумма углов треугольника. Слайд 6, 7, 8.

Часто знает и дошкольник,
Что такое треугольник.
А уж вам – то как не знать…
Но совсем другое дело –
Очень быстро и умело
Величины всех углов
В треугольнике узнать.

Чтобы находить быстро и правильно углы в любом треугольнике, нужно рассмотреть теорему о сумме всех углов треугольника. Вот этим мы и займёмся сейчас на уроке.

Цели:

– рассмотреть план доказательства теоремы о сумме углов треугольника;
– провести классификацию треугольников по углам;
– научиться применять теорему о сумме углов треугольника при решении задач.

  • Историческая справка о теореме “сумма углов треугольника”.

Свойство суммы углов треугольника было эмпирически, т. е. установлено опытным путём, вероятно, ещё в Древнем Египте, однако дошедшие до нас сведения о разных его доказательствах относятся к более позднему времени. Доказательство, изложенное в современных учебниках, содержится в комментарии Прокла к “Началам” Евклида. Слайды 9,10.

Сумма углов треугольника равна 180°

Дано:

ABC

Доказать:

A + B + C = 180°

План доказательства:

Т.к. в условии теоремы недостаточно данных для доказательства, то возникает вопрос о введении вспомогательного элемента (дополнительного построения – это построение прямой). Такие же ситуации возникают, когда недостаточно данных для решения задач.

1)

а ) Построить DE AC через вершину B ABC
б) Отметить 1, 2, 3.

2) Доказать, что A = 1, C = 3

A = 1 как накрест лежащие углы при DE AC,

AB – секущая.

3) Доказать, что 1 + 2 + 3 = 180°;

значит, A + 2 + C = 180°

1 + 2 + 3 = DBE

DBE – развёрнутый

DBE = 180°

Итак, 1 + 2 + 3 = 180°

А т.к. как накрест лежащие углы при DE AC

Значит, A + 2 + C = 180°

Теорема доказана.

4) Какие треугольники различают по сторонам? (Равнобедренный, равносторонний, разносторонний.)

Треугольники классифицируют не только по сторонам, но и по углам. Сначала поговорим об углах.

– Что такое угол? (Угол – это фигура, образованная двумя лучами, выходящими из одной точки. Лучи называются сторонами угла, а точку – вершиной угла.)
– Какой угол называют прямым? (Угол, величина которого равна 90º.)
– Какой угол называют развёрнутым? (Угол, величина которого равна 180º.)
– Какой угол называют острым? (Угол, величина которого меньше 90º.)
– Какой угол называют тупым? (Угол, величина которого больше 90º, но меньше 180º.)

Таким образом углы бывают острые, прямые, тупые, развёрнутые.

Начертите в тетради три угла: острый, тупой и прямой. Достройте рисунок до треугольника.

– Что для этого надо сделать? (Взять по точке на сторонах угла и соединить их.)
– Какие получились треугольники? (Тупоугольный, прямоугольный, остроугольный.)

Слайд 13–16.

Устный тест: Слайд 17 тест взят – “Поурочные разработки по геометрии 7 класс, Гаврилова Н.Ф., М.: ВАКО, 2006”.

1) В треугольнике АВС, А = 90°, при этом другие два угла могут быть:

а) один острый, а другой может быть прямым;
б) оба острые;
в) один острый, а другой может быть тупым.

2) В треугольнике АВС, В – тупой, при этом другие два угла могут быть:

а) только острыми;
б) острый и прямой;
в) острый и тупой.

3) В остроугольном треугольнике могут быть:

а) все углы острые;
б) один тупой и 2 острых угла;
в) один прямой и 2 острых угла.

Проверка по Слайду 18, 19, 20.

5) Выдаются карточки с заданием. Назначается время для самостоятельного выполнения – 7 минут. Затем проверяется через мультимедиа.

Отработка навыков по готовым чертежам: Слайд 21–30.

Найти 1 , 2.

6)Вывод урока:

– По видам углов рассматривают (остроугольный, тупоугольный, прямоугольный треугольник).

– Чему равна сумма углов в любом треугольнике (Сумма углов в любом треугольнике равна 180°).

– Также данную теорему рассмотрим при решении задачи № 228 (а)

Записали: Дом. задание: Гл. IV §1 п. 30 №223 (а; б), 228 (б) .

№ 228 (а). Рассмотрим: 2 случая решения задачи:

При наличии времени провести тест.

7) Тест по готовым чертежам: Приложение 1.