Урок геометрии по теме "Практические приложения подобия треугольников". 8-й класс

Разделы: Математика

Класс: 8


Тема урока: Практические приложения подобия треугольников.

Цели урока:

  • Повторить теорему Пифагора и обратную ей теорему.
  • Повторить признаки подобия треугольников.
  • Узнать один из способов применения подобия треугольников на практике.
  • Учиться логически мыслить, анализировать, рассуждать, выделять главное и делать выводы.

Тип урока: Урок закрепления знаний.

План урока:

  • Организационный момент. (1 минута.)
  • Практическая работа для определения темы урока. (7 минут.)
  • Постановка целей урока. (2 минуты.)
  • Повторение изученного материала. (4 минуты.)
  • Тестовая работа с последующей проверкой (4 минуты.)
  • Актуализация знаний. (3 минуты.)
  • Практическое задание на применение подобия треугольников. (11 минут.)
  • Решение задач с применением нового метода. (10 минут.)
  • Подведение итогов урока. (2 минуты.)
  • Постановка домашнего задания. (1 минута.)

Оборудование:

  • Видеопроектор + компьютер.
  • Карточки с тестовой работой.
  • Карточки для определения темы урока.
  • Карточки с задачами.
  • Книга “Таинственный остров” Жюля Верна.
  • Верёвка.
  • Зеркало.
  • Коврик.
  • Рулетка.
  • Шест в виде ели.

Ход урока

Перед тем как приступить к изучению нового материала, повторим самые известные в геометрии теоремы, которые вы изучали совсем недавно. Это теорема Пифагора и обратная ей. (Презентация. На экране Слайд 1).

Примерные ответы учащихся:

  • В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы.
  • Если в треугольнике сумма квадратов двух сторон равна квадрату третьей стороны, то этот треугольник прямоугольный.

Для того, чтобы узнать тему нашего сегодняшнего урока, вам придётся немного потрудиться. А поможет вам в этом как раз теорема, обратная теореме Пифагора.

Торопись, ведь дни проходят,
Мы у времени в гостях.
Не рассчитывай на помощь,
Помни: все в твоих руках!

Перед вами лежат карточки (Приложение 1), на них изображены треугольники. Для каждого треугольника определите, является он прямоугольным или нет. Если не является, то соответствующую букву вычеркните. Из оставшихся букв составьте слово – оно и является символом темы сегодняшнего урока. (Слайд 2)

Учащиеся работают в парах, все вычисления выполняют на черновиках.

Итак, все буквы найдены, У меня к вам вопрос: Какое же слово у вас получилось? (Подобие.) (Слайд 3) А тема нашего урока “Практические приложения подобия треугольников”.

А теперь запишите в тетрадях число и тему урока “Практические приложения подобия треугольников”.

Давайте определимся с тем, какие цели мы поставим перед собой при изучении данной темы. (Слайд 4)

Первую поставленную цель мы уже достигли – повторили теорему Пифагора и обратную ей теорему, с их помощью выяснили тему урока.

Затем, раз уж мы с вами будем говорить о подобии треугольников, надо повторить признаки подобия треугольников.

Потом я расскажу вам, как на практике применяется подобие треугольников.

И, наконец, вы сами сможете воспользоваться признаками подобия треугольников при решении задач.

Перейдём к выполнению второй поставленной задачи: повторим признаки подобия треугольников. Сформулируйте, пожалуйста, признаки подобия треугольников.

Примерные ответы учащихся: (ответы появляются на экране по мере их поступления). (Слайд 5)

  • Если два угла одного треугольника соответственно равны двум углам другого треугольника, то такие треугольники подобны.
  • Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключённые между этими сторонами, равны, то такие треугольники подобны.
  • Если три стороны одного треугольника пропорциональны трём сторонам другого треугольника, то такие треугольники подобны.

Теперь я попрошу вас рассказать друг другу эти признаки, чтобы закрепить их основательно.

Учащиеся работают в парах, рассказывают друг другу признаки.

Проверим сейчас, как вы усвоили применение признаков при решении простейших задач. Для этого вам надо ответить на вопросы теста, выбрать правильные ответы. Карточки с вопросами перед вами. (Приложение 2).

Учащиеся отвечают на вопросы.

Проверим, каким образом вы справились с поставленной задачей. Попрошу выйти к доске с тетрадями пять человек. На экране будут появляться правильные ответы. (Слайд 6) Если ваш ответ верен, то стоим на месте, если же вы ошиблись, то делаем шаг назад. Кто в итоге останется на месте, заработает отметку “5”, и так по убывающей.

Учащиеся выполняют проверку.

Учитель оглашает отметки.

Итак, мы с вами повторили всё, что необходимо знать для практического применения признаков подобия треугольников. Теперь поставлю перед вами задачу, которую я, как учитель именно математики, решила легко, а у других это вызывает затруднения. Итак, однажды, около одного из домов в нашей деревне мы с ребятами увидели одиноко стоящее дерево, ель. (Слайд 7)

Возник вопрос: а не упадёт ли эта ель на дом, не разрушит ли его. Конечно, расстояние от дома до дерева известно, а вот высота ели – нет. Как же быть? Ответить на вопрос помогла одна из трёх вещей, которые сейчас и перед вами. Это верёвка, зеркало и книга Жюля Верна “Таинственный остров”. (Слайд 8) Попробуйте догадаться, чем воспользовалась я?

Учащиеся предлагают свои варианты.

Помогла мне книга. Открываем главу 15…(Слайд 9–10) Здесь подробно рассказано, как вычислить высоту отвесной стены. (На слайде текст один из учащихся зачитывает его вслух.)

Попробуем воспроизвести действия профессора. И сделаем рисунки и записи в тетради.

Один из учащихся встаёт около окна с ёлкой в руках(изображая ель), второй встаёт между дверью и окном посередине, третий ложится на коврик у двери. С помощью рулетки измеряем расстояние от ели до шеста(от первого до второго) и от шеста до глаз лежащего ученика. Всю картинку видим на слайде. (Слайд 11–12)

Учащиеся выполняют записи и рисунки в тетради.

Учитель выполняет рисунки и записи на доске.

Ну а теперь по данным чертежа составим пропорцию. (Слайд 13)

Учащиеся делают необходимые записи в тетради.

Используя выводы нашего исследования, решим задачу на вычисление высоты ракеты, если известна длина её тени. Соответствующий рисунок перед вами на карточках. (Приложение 3). (Слайд 14)

Решение проведём на доске все вместе, составив соответствующую пропорцию.

Выполним проверку по заранее приготовленному решению на экране. (Слайд 15)

А теперь проверим, сможете ли вы самостоятельно применить полученные сегодня знания. Для этого вам надо решить задачу, её условие на экране. (Слайд 16)

Учащиеся решают задачу.

Если вы уже справились с решением, то проверьте свои результаты с тем, как дело обстоит на самом деле.

Итак, давайте вспомним, о чём мы вели речь на сегодняшнем уроке?

Примерные ответы учащихся:

  • О подобии треугольников.
  • О том, как найти высоту объекта.
  • О том, как составить пропорцию.

Давайте посмотрим, выполнили ли мы с вами поставленные цели? (Слайд 17)

Мы повторили теорему Пифагора и обратную ей теорему? (Да.)

Мы повторили признаки подобия треугольников? (Да.)

Мы познакомились с одним из способов применения подобия на практике? (Да.)

Мы узнали кое – что новое и интересное? (Да.)

Значит, поставленные цели выполнены? (Да.)

Значит, урок прошёл не зря? (Да.)

Запишите, пожалуйста, домашнее задание. № 580, № 579. При решении этих задач вам пригодятся те практические навыки работы, с которыми познакомились сегодня. (Слайд 18)

Итак, урок закончен, всем спасибо за работу.

Урок сопровождается презентацией.

Список литературы:

  1. Белицкая О. В. Геометрия. 8 класс. Тесты: В 2 ч. – Саратов: Лицей, 2009.
  2. Атанасян Л. С. Бутузов В. Ф. Кадомцев С. Б. Позняк Э. Г. Юдина И. И. Геометрия, 7–9 Учебник для общеобразовательных учреждений – Москва: Просвещение, 2011.
  3. Жюль Верн – Таинственный остров.