Арифметическая прогрессия. 9-й класс

Разделы: Математика

Класс: 9


Тип урока: урок изучения нового материала.

Цель урока: Формирование понятия арифметической прогрессии как одного из видов последовательностей, вывод формулы n-го члена, знакомство с характеристическим свойством членов арифметической прогрессии. Решение задач.

Задачи урока:

  • Образовательные – ввести понятия арифметической прогрессии; формулы n-го члена; характеристическое свойство, которым обладают члены арифметических прогрессий.
  • Развивающие – вырабатывать умения сравнивать математические понятия, находить сходства и различия, умения наблюдать, подмечать закономерности, проводить рассуждения по аналогии; сформировать умение строить и интерпретировать математическую модель некоторой реальной ситуации.
  • Воспитательные – содействовать воспитанию интереса к математике и ее приложениям, активности, умению общаться, аргументировано отстаивать свои взгляды.

Оборудование: компьютер, мультимедийный проектор.

Учебные пособия: Алгебра 9, Ю.Н.Макарычев, Н.Г.Миндюк, К.Н.Нешков, С.Б.Суворова под редакцией С.А.Теляковского, 2010.

СТРУКТУРА И ХОД УРОКА

Этап урока

Название используемых ЭОР

Формируемые УУД

Познавательные

Регулятивные

Коммуникативные

Личностные

1. Организационный момент, постановка задачи (2 мин.)
Приветствие.  Тема сегодняшнего урока – арифметическая прогрессия. На этом уроке мы узнаем, что такое арифметическая прогрессия, какой общий вид она имеет, выясним, как отличить арифметическую прогрессию от других последовательностей и решим задачи, где используются свойства арифметических прогрессий.   Постановка и формулирование проблемы, знаково-символическое моделирование,      
2. Актуализация знаний, устная работа (8 мин.)
Последовательность (xn) задана формулой: xn = n2.  Какой номер имеет член этой последовательности, если он равен 144? 225? 100? Являются ли членами этой последовательности числа 48? 49? 168?
О последовательности (un) известно, что u1 = 2, un+1 = 3un + 1
. Как называется такой способ задания последовательности? Найдите первые четыре члена этой последовательности.
О последовательности (an) известно, что
an = (n – 1)(n + 4).
Как называется такой способ задания последовательности? Найдите n, если an = 150?
ЭОР (И) http://alexlarin.net/ege.html Анализ объектов с целью выделения признаков, подведение под понятие Рефлексия, анализ, синтез, построение логической цепи рассуждений, знаково-символическое моделирование Целеполагание, коррекция, оценка, волевая саморегуляция Умение слушать собеседника,
уважение иной точки зрения, учет разных мнений, умение договариваться, находить общее решение, умение аргументировать свое предложение
Самооценка, развитие познавательных интересов, формирование мотивов достижения, сопереживание
3. Изучение нового материала (15 мин.)
Прогрессия – последовательность величин, каждая следующая из которых находится в некоей, общей для всей прогрессии, зависимости от предыдущей. Термин ныне во многом устарел и встречается только в сочетаниях "арифметическая прогрессия" и "геометрическая прогрессия".
Термин "прогрессия" имеет латинское происхождение (progression, что означает "движение вперед") и был введен римским автором Боэцием (VI в.). Этим термином в математике прежде именовали всякую последовательность чисел, построенную по такому закону, который позволяет неограниченно продолжать эту последовательность в одном направлении. В настоящее время термин "прогрессия" в первоначально широком смысле не употребляется. Два важных частных вида прогрессий – арифметическая и геометрическая – сохранили свои названия.
Рассмотрим последовательности чисел:

2, 6, 10, 14, 18, :.
11, 8, 5, 2, – 1, :.
5, 5, 5, 5, 5, :.

Чему равен третий член первой последовательности? Последующий член? Предыдущий член? Чему равна разность между вторым и первым членами? Третьим и вторым членами? Четвертым и третьим?

  Классификации объектов;
подведение под понятие, выведение следствий;
установление причинно-следственных связей; построение логической цепи рассуждений;.смысловое чтение, поиск и выделение необходимой информации, структурирование знаний, знаково-символическое моделирование, анализ объектов с целью выделения признаков, подведение под понятие
Выбор наиболее эффективного способа решения
Коррекция  оценка, волевая саморегуляция решений.
Контроль и оценка.
Умение слушать собеседника, понимание возможности различных позиций, ориентация на позицию других людей, умение аргументировать свое предложение Развитие доброжелатености, доверия и внимательности к людям
Если последовательность построена по одному закону, сделайте вывод, какой будет разность между шестым и пятым членами первой последовательности? Между седьмым и шестым?
Назовите два последующих члена каждой последовательности. Почему Вы так считаете? (Ответы учеников)
Каким общим свойством обладают эти последовательности? Сформулируйте это свойство. (Ответы учеников)
Числовые последовательности, обладающие этим свойством, называются арифметическими прогрессиями. Предложить учащимся самим попробовать сформулировать определение.
Определение арифметической прогрессии: арифметической прогрессией называется последовательность, каждый член которой, начиная со второго, равен предыдущему, сложенному с одним и тем же числом: (an – арифметическая прогрессия, если  an+1 = an+d,  где d – некоторое число.
Число d, показывающее, на сколько следующий член
последовательности отличается от предыдущего, называется разностью прогрессии: d = an+1 – an.
Давайте еще раз посмотрим на последовательности и поговорим о различиях. Какие особенности есть у каждой последовательности и с чем они связаны?
Если в арифметической прогрессии разность положительна (d > 0), то прогрессия является возрастающей: 2, 6, 10, 14, 18, :. (d = 4) Если в арифметической прогрессии разность отрицательна (d < 0) , то прогрессия является убывающей: 11, 8, 5, 2, –1, :. (d = – 3)
В случае, если разность равна нулю (d = 0) и все члены прогрессии равны одному и тому же числу, последовательность называется стационарной: 5, 5, 5, 5, :.
Как задать арифметическую прогрессию? Рассмотрим следующую задачу. Задача. На складе 1 числа было 50 тонн угля. Каждый день в течение месяца на склад приходит машина с 3 тоннами угля. Сколько угля будет на складе 30 числа, если в течение этого времени уголь со склада не расходовался.
Если выписать количество угля, находящегося на складе каждого числа, получим арифметическую прогрессию. Как решить эту задачу? Неужели придется просчитывать количество угля в каждый из дней месяца? Можно ли как-то обойтись без этого? Замечаем, что до 30 числа на склад придет 29 машин с углем. Таким образом, 30 числа на складе будет
50 + 329 = 137 тонн угля
a2 = a1+d$
a3 = a2+d = a1+2d;
a4 = a3+d = a1+3d;
an = a1 + d(n – 1)
Таким образом, мы получили формулу n-ого члена арифметической прогрессии.
         
Пример 1. Последовательность (cn) – арифметическая прогрессия. Найдите c81, если c1 = 20  и d = 3.
Воспользуемся формулой n-ого члена c81 = c1 + d(81 – 1); c81 = 20 + 3 · 80, c81 = 260, Ответ: 260.
         
Рассмотрим следующую задачу:
В арифметической прогрессии четные члены оказались затерты: 3, :, 7, :, 13: Можно ли восстановить утраченные числа?
Учащиеся, скорее всего, сначала вычислят разность прогрессии, а затем будут находить неизвестные члены прогрессии. Тогда можно предложить им найти зависимость между неизвестным членом последовательности, предыдущим и последующим.
Решение: Воспользуемся тем, что в арифметической прогрессии разность между соседними членами постоянна. Пусть an – искомый член последовательности. Тогда an – an–1 = an+1 – an;
2an = an–1 + an+1; .

Замечание. Данное свойство арифметической прогрессии является ее характеристическим свойством. Это означает, что в любой арифметической прогрессии каждый член, начиная со второго равен среднему арифметическому предыдущего и последующего
(). И, наоборот, любая последовательность, в которой каждый член, начиная со второго равен среднему арифметическому предыдущего и последующего, является арифметической прогрессией.

         
4. Первичное закрепление (15 мин.)
№ 575 аб – устно ; № 576 авд – устно ; № 577б – самостоятельно с проверкой
Последовательность (cn) – арифметическая прогрессия. Найдите c21, если c1 = 5,8 и d = –1,5
Воспользуемся формулой n-ого члена c21 = c1 + d(21 – 1), c21 = 5,8 + (–1,5) · 20; c21 = – 24,2   Ответ: – 24,2.

№ 580 а Найдите 23-й и n-ый члены арифметической прогрессии – 8; – 6,5; :

Решение: Первый член арифметической прогрессии равен – 8. Найдем разность арифметической прогрессии, для этого надо из последующего члена последовательности вычесть предыдущий: – 6,5 – (– 8) = 1,5.

Воспользуемся формулой n-ого члена: an = a1 + d(n – 1) an = – 8 + 1,5(n – 1);  
a23 = – 8 + 1,5 (23 – 1);  aт = 25       Ответ: 25

№584 а  Найдите первый член арифметической прогрессии (xn), если x30 = 128, d = 4

Решение. Воспользуемся формулой n-ого члена, записав ее для z
Подставив известные значения, получаем: 128 = x1 + 4 · 29;  x1 = 128 – 116; x1 = 12

Ответ: 12

  Аналогия, смысловое чтение,  поиск и выделение необходимой информации, структурирование знаний, знаково-символическое моделирование, анализ объектов с целью выделения признаков, подведение под понятие, построение логической цепи рассуждений, работа по алгоритму
Рефлексия, анализ, синтез, построение логической цепи рассуждений,, коррекция, оценка, знаково-символическое моделирование.
Контроль и оценка.
Волевая  саморегуляция Контроль и оценка
Умение слушать собеседника, понимание возможности различных позиций, ориентация на позицию других людей, умение аргументировать свое предложение Развитие доброжелатености, доверия и внимательности к людям
Таким образом, зная только первый член арифметической прогрессии и разность, мы можем найти любой член последовательности. Всегда ли это так?
Проанализируем, как зависит каждый член последовательности от первого члена и разности:

Задача. Числовая последовательность задана формулой an = 3+5n, n = 1,2,3
Является ли эта последовательность арифметической прогрессией?

Решение.

1-й способ.

Поскольку an+1 = 3+5(n + 1)= 3 + 5n + 5 = an + 5, при всех значениях n, то последовательность является арифметической прогрессией по определению. Из полученной формулы an+1 = an+5 разность этой прогрессии равна 5.

2-й способ.

Если последовательность является арифметической прогрессией, то должно выполняться характеристическое свойство:

Выполнив преобразования в обратную сторону для любого n, получаем, что данная последовательность является арифметической прогрессией.

Ответ: является.

Замечание. Любая арифметическая прогрессия может быть задана формулой an = kn + b где k и b – некоторые числа.

Задача. Седьмой член арифметической прогрессии равен 1 и равен разности между четвертым и вторым членами. Найти первый член прогрессии.
Решение. По условию x7 = 1; x4 – x2 = 1,. Заметим, что x4 – x2 = 2d, откуда d = 0,5
По формуле n-ого члена x7 = x1 + 0,5 · 6, откуда x1 = – 2

Ответ: – 2.

         
5. Подведение итогов урока (3 мин.)
Вспомним начало нашего урока, ребята. Удалось ли за сегодняшний урок узнать что-то новое, сделать какие-то открытия? А какие цели урока мы ставили перед собой? Как Вы считаете, нам удалось достигнуть поставленных целей?   Мотивация, актуализация знаний, выявление важного ,существенного для настоящего момента, введение под понятие Коррекция, оценка и контроль знаний, Волевая  саморегуляция Умение слушать собеседника, понимание возможности различных позиций, ориентация на позицию других людей, умение аргументировать свое предложение Развитие доброжелатености, доверия и внимательности к людям
6. Домашнее задание (2 мин.)
Пункт 25, № 578а, № 580б, №582, №586а, №601а.

Творческое задание для сильных учеников: Докажите, что в арифметической прогрессии для любых номеров, таких что k < n, выполняются равенства .

Спасибо за урок, ребята. Вы сегодня хорошо потрудились.

  Конструирование собственного алгоритма, выбор оптимального решения; поиск необходимой информации, в зависимости от конкретных условий; рефлексия способов и условий действия, контроль и оценка процесса и результатов деятельности волевая саморегуляция Взаимоконтроль и взаимопомощь по ходу выполнения задания Формирование мотивов достижения социального признания, формирование моральной самооценки.