"Тригонометрические тождества". 10-й класс

Разделы: Математика

Класс: 10


“Математическая истина, независимо
от того, в Париже или в Тулузе, одна и та же”
Б. Паскаль

Тип урока: Урок формирования умений и навыков.

Урок общеметодологической направленности.

Деятельностная цель: формирование способности учащихся к новому способу действия, связанному с построением структуры изученных понятий и алгоритмов.

Цели урока:

  • дидактическая: научить применять полученные ранее знания, умения и навыки для упрощения выражений и доказательства тригонометрических тождеств.
  • развивающая: развивать логическое мышление, память, познавательный интерес, продолжать формирование математической речи, вырабатывать умение анализировать и сравнивать.
  • воспитательная: показать, что математические понятия не изолированы друг от друга, а представляют определенную систему знаний, все звенья которой находятся во взаимной связи, продолжить формирование эстетических навыков при оформлении записей, навыков контроля и самоконтроля.

Для успешного решения задач по тригонометрии необходимо уверенное владение многочисленными формулами. Тригонометрические формулы надо помнить. Но это не значит, что их надо заучивать все наизусть, главное запоминать не сами формулы, а алгоритмы их вывода. Любую тригонометрическую формулу можно довольно быстро получить, если твердо знать определения и основные свойства функций sinα, cosα, tgα, ctgα,соотношение sin2α+ cos2α =1 и т.д.

Разучивание тригонометрических формул в школе не для того чтобы вы всю оставшуюся жизнь вы вычисляли синусы и косинусы, а для того чтобы ваш мозг приобрел способность работать. (Презентация. Слайд 2)

Дороги не те знания, которые отлагаются в мозгу, как жир; дороги те, которые превращаются в умственные мышцы” писал Г. Спесер, английский философ и социолог.

Будем накачивать и тренировать умственные мышцы. Поэтому повторим основные тригонометрические формулы. (Слайд 3)

 (Слайд 4)

(Слайд 5)

Мы повторили формулы, теперь можем помочь двум друзьям, назовём их Пётр и Степан.

После преобразования некоторого очень сложного тригонометрического выражения А они получили следующие выражения: (Слайд 6)

(Слайд 7) Каждый отстаивал свой ответ. Как узнать кто из них прав? Обратились к Артёму, который дружит с Петром “Платон мне друг, но истина дороже”: сказал Артём и предложил несколько способов разрешения их спора. А какие вы можете предложить способы установить истину? Предлагают способы установления истины (Слайд 8):

1) Преобразовать, упростить АП и Ас, т.е. привели к одному выражению

2) АП – Ас = 0

3) …..

Т. е. оба были правы. И их ответы равны при всех допустимых значениях α и β .

Как называются такие выражения? Тождествами. Какие тождества вы знаете?

Тождество, основное понятие логики, философии и математики; используется в языках научной теорий для формулировки определяющих соотношений, законов и теорем.

Тождество – философская категория, выражающая равенство, одинаковость предмета, явления самим с собой или равенство нескольких предметов.

В математике тождество – это равенство, которое справедливо для любых допустимых значений входящих в него переменных. (Слайд 9)

Тема урока: “Тригонометрические тождества”.

Цели: найти способы.

Двое работают у доски.

№ 2. Доказать тождество.

П.ч.=Л.ч.

Тождество доказано.

№ 3. Доказать тождество:

1 способ:

2 способ:

Способы доказательства тождеств.

  1. Выполнить равносильные преобразования правой части тождества. Если в итоге получим левую часть, тогда тождество считается доказанным.
  2. Выполнить равносильные преобразования левой и правой части тождества. Если в результате получим одинаковый результат, тогда тождество считается доказанным.
  3. Из правой части тождества вычитаем левую часть. Производим над разностью равносильные преобразования. И если в итоге получаем нуль, то тождество считается доказанным.
  4. Из левой части тождества вычитают правую часть. Производим над разностью равносильные преобразования. И если в итоге получаем нуль, то тождество считается доказанным.

Следует так же помнить, что тождество справедливо лишь для допустимых значений переменных.

Для чего необходимо уметь доказывать тригонометрические тождества? В ЕГЭ задание С1 тригонометрические уравнения!

Решается № 87 (п. 3)

Итак, подведем итоги урока. (Слайд 10)

Какова была тема урока?

Какие способы доказательства тождеств вам известны?

1. Преобразование левой части к правой или правой к левой.
2. Преобразование левой и правой части к одному и тому же выражению.
3. Составление разности левой и правой частей и доказательство равенства этой разности нулю.

Какие формулы при этом используются?

1. Формулы сокращенного умножения.
2. 6 тригонометрических тождеств.

Рефлексия урока. (Слайд 11)

Продолжите фразы:

– сегодня на уроке я узнал …
– сегодня на уроке я научился…
– сегодня на уроке я повторил…
– сегодня на уроке я познакомился…
– сегодня на уроке мне понравилось…

Домашнее задание. Глава VIII; §6; № 78(четные); № 80(2; 4); № 87(2; 4). (Слайд 12)

Творческое задание: Подготовить презентацию о знаменитых тождествах математики. (Например тождество Эйлера.) (Слайд 13)