Тип урока: урок «открытия» нового знания.
Программа: «Школа 2000…».
Учебник: «Математика, 6 класс, часть 3».
Авторы: Дорофеев Георгий Владимирович, Петерсон Людмила Георгиевна.
Цели урока:
- Дидактическая: ввести понятие замечательной точки треугольника – центра тяжести; способствовать выработке навыков построения центра тяжести.
- Развивающая: способствовать развитию мыслительной деятельности учащихся, развитию математической речи; умение слушать другого и понимать его речь.
- Воспитательная: воспитывать аккуратность выполнения заданий, формировать любознательность, пробуждать интерес ко всему, что нас окружает.
Формы работы: фронтальная, индивидуальная.
Ход урока
I. Самоопределение к учебной деятельности.
Цели этапа:
- включить учащихся в учебную деятельность;
- определить содержательные рамки урока – продолжаем изучать геометрические фигуры.
Деятельность учителя | Предполагаемые ответы учащихся |
Здравствуйте, ребята! Я вижу, что у вас хорошее настроение, надеюсь оно останется в течение всей работы. Вспомните, какой раздел математики мы изучаем? Что изучает геометрия? Чему вы научились на предыдущих уроках? Какие виды треугольников вы знаете? А как думаете, все уже узнали про треугольники? Итак, продолжим изучать замечательную науку – геометрию. |
Геометрию. Геометрические фигуры на плоскости и в пространстве. Узнали, что такое треугольник, виды треугольников; научились строить биссектрису и медиану треугольника. Прямоугольные, остроугольные, тупоугольные, равносторонние. Наверное, нет. |
II. Актуализация знаний и фиксация затруднения в деятельности.
Цели этапа:
- актуализировать учебное содержание необходимое и достаточное для изучения нового материала: работа с треугольником, его элементами;
- актуализировать мыслительные операции: анализ, сравнение, обобщение.
Деятельность учителя | Предполагаемые ответы учащихся |
Посмотрите на рисунок. Какие геометрические фигуры вы видите, назовите их. Вспомните, что такое биссектриса угла? (на доску вывешивается табличка с определением) Как ее можно построить? Сколько биссектрис в треугольнике можно провести? Что такое медиана треугольника? (на доску вывешивается табличка с определением) Как ее можно построить? Сколько медиан в треугольнике можно провести? Я вам предлагаю построить с помощью линейки и транспортира медианы и биссектрисы треугольника. У каждой группы лежат остроугольные, прямоугольные и равносторонние треугольники. С одной стороны треугольника постройте три медианы, а с другой – три биссектрисы (необходимые вычисления выполняйте в тетрадях). |
Треугольник АВД. Медиана АЕ. Биссектриса ВК. Биссектриса угла – это луч, исходящий из вершины угла и делящий его пополам. С помощью транспортира измерить угол, поделить градусную меру пополам, провести луч. Три. Медиана треугольника – это отрезок, соединяющий вершину треугольника с серединой противоположной стороны. С помощью линейки построить середину стороны и полученную точку соединить с противоположной вершиной треугольника. Три. (каждый учащийся строит медианы и биссектрисы своего треугольника) |
III. Выявление причины затруднения и постановка цели деятельности.
Цели этапа:
- организовать коммуникативное взаимодействие, в ходе которого выявляется и фиксируется отличительное свойство задания, вызвавшего затруднение в учебной деятельности;
- согласовать цель и тему урока.
Деятельность учителя | Предполагаемые ответы учащихся |
Что можете заметить (если точно выполнили построение)? У всех получилось? Оказывается это важные свойства биссектрис и медиан треугольника. (на доску вывешиваются таблички со свойствами) А сейчас я проведу эксперимент. (учитель устанавливает в равновесии с первого раза заранее заготовленный треугольник на стержень). Попробуйте проделать этот опыт каждый со своим треугольником. Почему у вас не получилось с первого раза установить треугольник? Какова цель урока? Сформулируйте тему урока. Вы назвали интересные варианты. Предлагаю пока остановиться на такой теме: «Интересные точки треугольника» (тема записывается на доске). |
Медианы пересеклись в одной точке и биссектрисы пересеклись в одной точке. (учащиеся пытаются установить треугольник на стержень) Не знаем, в каком месте треугольника надо подставить стержень. Выяснить, в какую точку треугольника надо поставить стержень, чтобы треугольник находился в равновесии. (учащиеся предлагают варианты темы урока) |
IV. Построение проекта выхода из затруднения.
Цели этапа:
- организовать коммуникативное взаимодействие для построения нового способа действия, устраняющего причину выявленного затруднения;
- зафиксировать новый способ действия.
Деятельность учителя | Предполагаемые ответы учащихся |
Какие точки вы построили на ваших треугольниках? Попробуйте с ними поэкспериментировать. Итак, я смотрю, что у многих получилось установить треугольник в равновесии на стержень. Какая точка вам помогла? (спросить у каждой группы) Как бы вы назвали эту точку? В математике эту точку назвали центром тяжести. Это одна из замечательных точек треугольника. Итак, какую цель ставили в начале урока? Вы ее достигли? Какая точка всем помогла? Как ее назвали? Как ее найти? Давайте уточним тему урока. |
Точки пересечения медиан и биссектрис. (учащиеся пытаются установить треугольник в равновесие на стержень) Точка пересечения медиан (у групп 1 и 2, где были выданы остроугольные и прямоугольные треугольники). Точка пересечения медиан или биссектрис (у 3 группы, где были выданы равносторонние треугольники). (учащиеся предлагают свои варианты) Необходимо было выяснить, в какую точку треугольника надо поставить стержень, чтобы треугольник находился в равновесии. Да. Точка пересечения медиан. Центром тяжести, замечательной точкой треугольника. Построить медианы треугольника. Замечательная точка треугольника – центр тяжести. |
V. Первичное закрепление.
Цель этапа:
- зафиксировать изученное учебное содержание.
Деятельность учителя | Предполагаемые ответы учащихся |
А для всех видов треугольников центром тяжести будет точка пересечения медиан? У вас на столах лежат еще тупоугольные треугольники. Постройте центр тяжести и проведите эксперимент. Получилось? Не переживайте, у кого не получилось – это могут быть неточности в построении. А как вы думаете, сколько медиан достаточно провести и почему? |
Наверное. (учащиеся работают с тупоугольными треугольниками) Да. Две, так как они пересекутся в одной точке. |
VI. Рефлексия учебной деятельности на уроке.
Цели этапа:
- зафиксировать новое содержание, изученное на уроке;
- оценить собственную деятельность на уроке;
- зафиксировать затруднения как направления будущей учебной деятельности;
- обсудить и записать домашнее задание.
Деятельность учителя | Предполагаемые ответы учащихся |
Что нового узнали на уроке? Любой треугольник имеет центр тяжести? Какие трудности испытывали во время выполнения работы? Где в жизни встречали сегодняшнее открытие? А есть еще замечательные точки у треугольника? Об этом мы узнаем на следующих уроках. Оцените свою деятельность на уроке по следующим критериям: зеленая карточка – «Я знаю, что такое центр тяжести и как его построить», красная карточка – «У меня еще не все получается». Запишите домашнее задание: §1, п. 4, стр. 96-98, кто поднял зеленую карточку – № 417; кто поднял красную карточку – № 419 (с разными видами треугольников). Все молодцы. Спасибо за урок. До свидания. |
У треугольника есть замечательная точка – центр тяжести. Чтобы его найти, надо построить хотя бы две медианы. С помощью этой точки можно треугольник установить в равновесии на палочке. Любой. (выслушать ответы учащихся) (учащиеся называют примеры из жизни) Наверное. (учащиеся поднимают цветные карточки для рефлексии) |