Цель: повысить мотивацию к обучению; развивать вычислительные навыки, сообразительность, умение работать в команде.
Ход занятия
Актуализация знаний. Сегодня мы продолжим говорить об окружности. Позвольте напомнить определение окружности: что называется окружностью?
Слайд 2
Окружность — это линия, состоящая из всех точек плоскости, которые находятся на заданном расстоянии от одной точки плоскости, называемой центром окружности.
На слайде изображена окружность, отмечен ее центр — точка О, проведены два отрезка: ОА и СВ. Отрезок ОА соединяет центр окружности с точкой на окружности. Он называется РАДИУСОМ (по-латыни radius — “спица в колесе”). Отрезок СВ соединяет две точки окружности и проходит через ее центр. Это диаметр окружности (в переводе с греческого – “поперечник”).
Также нам понадобится определение хорды окружности - это отрезок, соединяющий две точки окружности (на рисунке – хорда DE).
Давайте выясним вопрос о взаимном расположении прямой и окружности.
Слайд 3
Следующий вопрос и он будет основным: выяснить свойства, которыми обладают пересекающиеся хорды, секущие и касательные.
Слайд 4
Доказывать эти свойства вы будете на уроках математики, а наша задача научиться применять эти свойства при решении задач, так как они находят широкое применение на экзаменах и в форме ЕГЭ, и в форме ГИА.
Задание для команд.
- Изобразить и записать свойство пересекающихся в точке Р хорд КМ и NF.
- Изобразить и записать свойство касательной КМ и секущей КF.
- Изобразить и записать свойство секущих КМ и МF.
Далее продолжим работать в парах над решением простейших задач по применению этих свойств:
Используя данные на рисунке, найдите х. Слайд 5–6
Кто быстрее, правильней. С последующим обсуждением и проверкой решения всех задач. Отвечающие зарабатывают для своей команды поощрительные баллы.
Ну, а теперь приступим к решению более серьезных задач. Вашему вниманию предлагается три блока: пересекающиеся хорды, касательная и секущая, две секущие. Подробным образом разберем решение по одной задачи из каждого блока.
(Разбирается решение с подробной записью №4, №7, №12)
2. Практикум по решению задач
а) Пересекающиеся хорды
1. E – точка пересечения хорд AB и CD. AE=4, AB=10, СE:ED=1:6. Найти CD.
Решение:
2. E – точка пересечения хорд AB и CD. AB=17, CD=18, ED=2CE. Найти AE и BE.
Решение:
3. E – точка пересечения хорд AB и CD. AB=10, CD=11, BE=CE+1. Найти CE.
Решение:
4. E – точка пересечения хорд AB и CD. ED=2AE, CE=DE-1, BE=10. Найти CD.
Решение:
Ответы:
- 14
- 8;9
- 3
- 11
б) Касательная и секущая
5. Из одной точки проведены к окружности касательная и секущая. Касательная равна 6, секущая – 18. Определить внутренний отрезок секущей.
Решение:
6. Из одной точки проведены к окружности касательная и секущая. Найти касательную, если известно, что она меньше внутреннего отрезка секущей на 4 и больше внешнего отрезка на 4.
Решение:
7. Из одной точки проведены к окружности касательная и секущая. Найти секущую, если известно, что внутренний её отрезок относится к внешнему, как 3:1, а длина касательной равна 12.
Решение:
8. Из одной точки проведены к окружности касательная и секущая. Найти внешний отрезок, секущей, если известно, что внутренний её отрезок 12, а длина касательной 8.
Решение:
9. Касательная и секущая, исходящие из одной точки, соответственно равны 12 и 24. Определить радиус окружности, если секущая удалена от центра на 12.
Решение:
Ответы:
- 16
- 8
- 24
- 4
- 15
в) Две секущие
10. Из одной точки проведены к окружности две секущие, внутренние отрезки которых соответственно равны 8 и 16. Внешний отрезок второй секущей на 1 меньше внешнего отрезка первой. Найти длину каждой секущей.
Решение:
11. Из одной точки проведены к окружности две секущие. Внешний отрезок первой секущей относится к своему внутреннему, как 1:3. Внешний отрезок второй секущей на 1 меньше внешнего отрезка первой и относится к своему внутреннему отрезку, как 1:8. Найти длину каждой секущей.
Решение:
12. Через точку А, которая находится вне окружности на расстоянии 7 от её центра, проведен прямая, пересекающая окружность в точках В и С. Найдите длину радиуса окружности, если АВ=3, ВС=5.
Решение:
13. Из точки А проведены к окружности секущая длиной 12 см и касательная, составляющая внутреннего отрезка секущей. Найдите длину касательной.
Решение:
Ответы:
- 10,5; 17,5
- 12;18
- 5
- 6
3. Закрепление знаний
Считаю, что вы обладаете достаточным запасом знаний, чтобы отправится в небольшое путешествие по лабиринтам вашего интеллекта, посетив следующие станции:
- Соображай-ка!
- Решай-ка!
- Отвечай-ка!
На станции можно находиться не более 6 минут. За каждое верное решение задачи команда получает поощрительные баллы.
Командам вручаются маршрутные листы:
Маршрутный лист
Станция | Номера задач | Отметка о решении |
Решай-ка! | №1, №3 | |
Соображай-ка! | №5, №8 | |
Отвечай-ка! | №10, №11 |
Станция | Номера задач | Отметка о решении |
Соображай-ка! | №5, №8 | |
Отвечай-ка! | №10, №11 | |
Решай-ка! | №1, №3 |
Станция | Номера задач | Отметка о решении |
Соображай-ка! | №5, №8 | |
Отвечай-ка! | №10, №11 | |
Решай-ка! | №1, №3 |
4. Подведение итогов
Хотелось бы подвести итоги нашего занятия:
Помимо новых знаний надеюсь, вы лучше познакомились друг с другом, приобрели опыт работы в команде. А как вы думаете, полученные знания находят где-то применение в жизни?
Поэт Г. Лонгфелло был еще и математиком. Наверное, поэтому яркие образы, украшающие математические понятия, которые он использовал в своем романе “Каванг”, позволяют запечатлеть на всю жизнь некоторые теоремы и их применение. Читаем в романе следующую задачу:
“Лилия, на одну пядь поднимавшаяся над поверхностью воды, под порывом свежего ветра коснулась поверхности озера в двух локтях от прежнего места; исходя из этого требовалось определить глубину озера” (1 пядь равна 10 дюймам, 2 локтя – 21 дюйму).
А решается эта задача на основе свойства пересекающихся хорд. Посмотрите на рисунок, и станет ясно, как находится глубина озера.
Решение:
21•21=10•(2х+10)
441=20х+100
20х=341
Х=17,05