На мой взгляд, задача учителя – не только научить, а развить познавательный интерес у учащегося. Поэтому, когда возможно, связываю темы урока с практическими задачами.
На занятии учащиеся под руководством учителя составляют план решения задач на нахождение площади «сложной фигуры» (для расчеты сметы ремонта), закрепляют навыки решения задач на нахождение площади; происходит развитие внимания, способности к исследовательской деятельности, воспитание активности, самостоятельности.
Работа в парах создает ситуацию общения между теми, кто имеет знания и теми, кто их приобретает; в основе такой работы лежит повышение качества подготовки по предмету. Способствует развитию интереса к процессу учения и более глубокому усвоению учебного материала.
Урок не только систематизирует знания обучающихся, но и способствует развитию творческих, аналитических способностей. Применение задач с практическим содержанием на уроке позволяет показать востребованность математических знаний в повседневной жизни.
Цели урока:
Образовательные:
- закрепление знаний формул площади прямоугольника, прямоугольного треугольника;
- анализ заданий на вычисление площади “сложной” фигуры и способов их выполнения;
- самостоятельное выполнение заданий для проверки знаний, умений, навыков.
Развивающие:
- развитие приёмов умственной и исследовательской деятельности;
- развитие умения слушать и объяснять ход решения.
Воспитательные:
- воспитывать у учащихся навыки учебного труда;
- воспитывать культуру устной и письменной математической речи;
- воспитывать дружеское отношение в классе и умение работать в группах.
Тип урока: комбинированный.
Оборудование:
- Математика: учебник для 5 кл. общеобразоват. учреждений/ Н.Я. Виленкин, В.И. Жохов и др., М.: «Мнемозина», 2010.
- Карточки для групп учащихся с фигурами для вычисления площади сложной фигуры.
- Чертёжные инструменты.
План урока:
- Организационный момент.
- Актуализация знаний.
а) Теоретические вопросы (тест).
б) Постановка проблемы. - Изученного нового материала.
а) поиск решения проблемы;
б) решение поставленной проблемы. - Закрепление материала.
а) коллективное решение задач;
Физкультминутка.
б) самостоятельная работа. - Домашнее задание.
- Итог урока. Рефлексия.
Ход урока
I. Организационный момент.
Урок мы начнём вот с таких напутствующих слов:
Математика, друзья,
Абсолютно всем нужна.
На уроке работай старательно,
И успех тебя ждёт обязательно!
II. Актуализация знаний.
а) Фронтальная работа с сигнальными карточками (у каждого ученика карточки с числами 1, 2, 3, 4; при ответе на вопрос теста ученик поднимает карточку с номером правильного ответа).
1. Квадратный сантиметр – это:
- площадь квадрата со стороной 1 см;
- квадрат со стороной 1 см;
- квадрат с периметром 1 см.
2. Площадь фигуры, изображённой на рисунке, равна:
- 8 дм;
- 8 дм2;
- 15 дм2.
3. Справедливо ли утверждение, что равные фигуры имеют равные периметры и равные площади?
- да;
- нет.
4. Площадь прямоугольника определяется по формуле:
- S = a2;
- S = 2 • (a + b);
- S = a • b.
5. Площадь фигуры изображённой на рисунке, равна:
- 12 см;
- 8 см;
- 16 см.
б) (Постановка проблемы). Задача. Сколько надо краски, чтобы покрасить пол, который имеет следующую форму (см. рис.), если на 1 м2 расходуется 200 г краски?
III. Изучение нового материала.
Что же мы должны узнать, чтобы решить последнюю задачу? (Найти площадь пола, который имеет вид «сложной фигуры».)
Учащиеся формулируют тему и цели урока (если необходимо учитель помогает).
Рассмотрим прямоугольник ABCD. Проведём в нем линию KPMN, разбив прямоугольник ABCD на две части: ABNMPK и KPMNCD.
Чему равна площадь ABCD? (15 см2)
Чему равна площадь фигуры ABMNPK? (7 см2)
Чему равна площадь фигуры KPMNCD? (8 см2)
Проанализируйте полученные результаты. (15= = 7 + 8)
Вывод? (Площадь всей фигуры равна сумме площадей её частей.)
S = S1 + S2
Как можно применить это свойство для решения нашей задачи?(Разобьём сложную фигуру на части, найдём площади частей, затем площадь всей фигуры.)
S1 = 7 • 2 = 14 (м2)
S2 = (7 – 4) • (8 – 2 – 3) = 3 • 3 = 9 (м2)
S3 = 7 • 3 = 21 (м2)
S = S1 + S2 + S3 = 14 + 9 + 21 = 44 (м2)
Давайте составим план решения задач на нахождение площади «сложной фигуры»:
- Разбиваем фигуру на простые фигуры.
- Находим площади простых фигур.
а) Задача 1. (коллективное решение на доске и в тетрадях.) Сколько потребуется плитки, чтобы выложить площадку следующих размеров:
Решение:
S = S1 + S2
S1 = (60 – 30) • 20 = 600 (дм2)
S2 = 30 • 50 = 1500 (дм2)
S = 600 + 1500 = 2100 (дм2)
Есть ли другой способ решения? (Рассматриваем предложенные варианты.)
Ответ: 2100 дм2.
Задача 2. (коллективное решение на доске и в тетрадях.) Сколько требуется м2 линолеума для ремонта комнаты, имеющей следующую форму:
Решение:
S = S1 + S2
S1 = 3 • 2 = 6 (м2)
S2 = ((5 – 3) • 2) : 2 = 2 (м2)
S = 6 + 2 = 8 (м2)
Ответ: 8 м2.
Физкультминутка.
А теперь, ребята, встали.
Быстро руки вверх подняли.
В стороны, вперед, назад.
Повернулись вправо, влево.
Тихо сели, вновь за дело.
б) Самостоятельная работа (обучающего характера).
Учащиеся разбиваются на группы (№ 5–8 более сильные). Каждая группа – ремонтная бригада.
Задание бригадам: определите, сколько надо краски, чтобы покрасить пол, имеющий форму фигуры, изображённой на карточке, если на 1 м2 требуется 200 г краски.
Вы эту фигуру строите своей тетради и записывая все данные, приступаете к выполнению задания. Можете обсуждать решение (но только в своей группе!). Если какая-то группа справляется с заданием быстро, то ей – дополнительное задание (после проверки самостоятельной работы).
Задания для групп:
V. Домашнее задание.
п. 18, № 718, № 749.
Дополнительное задание. План-схема Летнего сада (Санкт-Петербург). Вычислить его площадь.
VI. Итоги урока.
Рефлексия. Продолжи фразу:
- Сегодня я узнал…
- Было интересно…
- Было трудно…
- Теперь я могу…
- Урок дал мне для жизни…