Площадь сложной фигуры. 5-й класс

Разделы: Математика

Класс: 5


На мой взгляд, задача учителя – не только научить, а развить познавательный интерес у учащегося. Поэтому, когда возможно, связываю темы урока с практическими задачами.

На занятии учащиеся под руководством учителя составляют план решения задач на нахождение площади «сложной фигуры» (для расчеты сметы ремонта), закрепляют навыки решения задач на нахождение площади; происходит развитие внимания, способности к исследовательской деятельности, воспитание активности, самостоятельности.

Работа в парах создает ситуацию общения между теми, кто имеет знания и теми, кто их приобретает; в основе такой работы лежит повышение качества подготовки по предмету. Способствует развитию интереса к процессу учения и более глубокому усвоению учебного материала.

Урок не только систематизирует знания обучающихся, но и способствует развитию творческих, аналитических способностей. Применение задач с практическим содержанием на уроке позволяет показать востребованность математических знаний в повседневной жизни.

Цели урока:

Образовательные:

  • закрепление знаний формул площади прямоугольника, прямоугольного треугольника;
  • анализ заданий на вычисление площади “сложной” фигуры и способов их выполнения;
  • самостоятельное выполнение заданий для проверки знаний, умений, навыков.

Развивающие:

  • развитие приёмов умственной и исследовательской деятельности;
  • развитие умения слушать и объяснять ход решения.

Воспитательные:

  • воспитывать у учащихся навыки учебного труда;
  • воспитывать культуру устной и письменной математической речи;
  • воспитывать дружеское отношение в классе и умение работать в группах.

Тип урока: комбинированный.

Оборудование:

  • Математика: учебник для 5 кл. общеобразоват. учреждений/ Н.Я. Виленкин, В.И. Жохов и др., М.: «Мнемозина», 2010.
  • Карточки для групп учащихся с фигурами для вычисления площади сложной фигуры.
  • Чертёжные инструменты.

План урока:

  1. Организационный момент.
  2. Актуализация знаний.
    а) Теоретические вопросы (тест).
    б) Постановка проблемы.
  3. Изученного нового материала.
    а) поиск решения проблемы;
    б) решение поставленной проблемы.
  4. Закрепление материала.
    а) коллективное решение задач;
    Физкультминутка.
    б) самостоятельная работа.
  5. Домашнее задание.
  6. Итог урока. Рефлексия.

Ход урока

I. Организационный момент.

Урок мы начнём вот с таких напутствующих слов:

Математика, друзья,
Абсолютно всем нужна.
На уроке работай старательно,
И успех тебя ждёт обязательно!

II. Актуализация знаний.

а) Фронтальная работа с сигнальными карточками (у каждого ученика карточки с числами 1, 2, 3, 4; при ответе на вопрос теста ученик поднимает карточку с номером правильного ответа).

1. Квадратный сантиметр – это:

  1. площадь квадрата со стороной 1 см;
  2. квадрат со стороной 1 см;
  3. квадрат с периметром 1 см.

2. Площадь фигуры, изображённой на рисунке, равна:

  1. 8 дм;
  2. 8 дм2;
  3. 15 дм2.

3. Справедливо ли утверждение, что равные фигуры имеют равные периметры и равные площади?

  1. да;
  2. нет.

4. Площадь прямоугольника определяется по формуле:

  1. S = a2;
  2. S = 2 • (a + b);
  3. S = a • b.

5. Площадь фигуры изображённой на рисунке, равна:

  1. 12 см;
  2. 8 см;
  3. 16 см.

б) (Постановка проблемы). Задача. Сколько надо краски, чтобы покрасить пол, который имеет следующую форму (см. рис.), если на 1 м2 расходуется 200 г краски?

III. Изучение нового материала.

Что же мы должны узнать, чтобы решить последнюю задачу? (Найти площадь пола, который имеет вид «сложной фигуры».)

Учащиеся формулируют тему и цели урока (если необходимо учитель помогает).

Рассмотрим прямоугольник ABCD. Проведём в нем линию KPMN, разбив прямоугольник ABCD на две части: ABNMPK и KPMNCD.

Чему равна площадь ABCD? (15 см2)

Чему равна площадь фигуры ABMNPK? (7 см2)

Чему равна площадь фигуры KPMNCD? (8 см2)

Проанализируйте полученные результаты. (15= = 7 + 8)

Вывод? (Площадь всей фигуры равна сумме площадей её частей.)

S = S1 + S2

Как можно применить это свойство для решения нашей задачи?(Разобьём сложную фигуру на части, найдём площади частей, затем площадь всей фигуры.)

S1 = 7 • 2 = 14 (м2)
S2 = (7 – 4) • (8 – 2 – 3) = 3 • 3 = 9 (м2)
S3 = 7 • 3 = 21 (м2)
S = S1 + S2 + S3 = 14 + 9 + 21 = 44 (м2)

Давайте составим план решения задач на нахождение площади «сложной фигуры»:

  1. Разбиваем фигуру на простые фигуры.
  2. Находим площади простых фигур.

а) Задача 1. (коллективное решение на доске и в тетрадях.) Сколько потребуется плитки, чтобы выложить площадку следующих размеров:

Решение:

S = S1 + S2
S1 = (60 – 30) • 20 = 600 (дм2)
S2 = 30 • 50 = 1500 (дм2)
S = 600 + 1500 = 2100 (дм2)

Есть ли другой способ решения? (Рассматриваем предложенные варианты.)

Ответ: 2100 дм2.

Задача 2. (коллективное решение на доске и в тетрадях.) Сколько требуется м2 линолеума для ремонта комнаты, имеющей следующую форму:

Решение:

S = S1 + S2
S1 = 3 • 2 = 6 (м2)
S2 = ((5 – 3) • 2) : 2 = 2 (м2)
S = 6 + 2 = 8 (м2)

Ответ: 8 м2.

Физкультминутка.

А теперь, ребята, встали.
Быстро руки вверх подняли.
В стороны, вперед, назад.
Повернулись вправо, влево.
Тихо сели, вновь за дело.

б) Самостоятельная работа (обучающего характера).

Учащиеся разбиваются на группы (№ 5–8 более сильные). Каждая группа – ремонтная бригада.

Задание бригадам: определите, сколько надо краски, чтобы покрасить пол, имеющий форму фигуры, изображённой на карточке, если на 1 м2 требуется 200 г краски.

Вы эту фигуру строите своей тетради и записывая все данные, приступаете к выполнению задания. Можете обсуждать решение (но только в своей группе!). Если какая-то группа справляется с заданием быстро, то ей – дополнительное задание (после проверки самостоятельной работы).

Задания для групп:

V. Домашнее задание.

п. 18, № 718, № 749.

Дополнительное задание. План-схема Летнего сада (Санкт-Петербург). Вычислить его площадь.

VI. Итоги урока.

Рефлексия. Продолжи фразу:

  • Сегодня я узнал…
  • Было интересно…
  • Было трудно…
  • Теперь я могу…
  • Урок дал мне для жизни…