Свойства пирамиды с равными боковыми ребрами

Разделы: Математика, Конкурс «Презентация к уроку»


Презентация к уроку

Загрузить презентацию (4 МБ)


Цели:

  • доказать свойства пирамиды с равными рёбрами;
  • сформировать умения использовать данную теорему при анализе условия задачи и построения чертежа к задаче;
  • сформировать у учащихся умения использовать данную теорему при решении двух шаговых задач.

I. Домашнее задание каждый ученик получает на заранее отпечатанных листочках.

Теория: по учебнику п.14.2, стр.110-111,2)и 3 задачи:

1. В правильной треугольной пирамиде высота основания равна h, боковые рёбра наклонены к плоскости основания под углом ?. Найти высоту пирамиды.

2. В основании пирамиды лежит треугольник со сторонами , ,4. Боковые рёбра наклонены к плоскости основания под углом 450. Найти высоту пирамиды.

3. Площадь основания правильной четырёхугольной пирамиды равна S. Боковые рёбра наклонены к плоскости основания под углом ?. Найти высоту пирамиды.

II. Устная работа по готовым чертежам. (Каждый ребёнок получает лист А-4 с чертежами треугольной пирамиды).

2.1. Докажем 3 (прямые) теоремы. Дано: МАВС треугольная пирамида, МО – высота пирамиды.

(к рис.1):

1. Ученики доказывают “ простую” теорему из одного условия и одного заключения

2. Используют признак равенства прямоугольных треугольников по катету и гипотенузе

3. Делают вывод: из того что АО = ВО =СО, следует О – центр окружности, описанной около основания.

4.Учитель уточняет формулировки данного обстоятельства “основание пирамиды совпадает с центром окружности, описанной около основания” или “ вершина пирамиды проектируется в центр окружности, описанной около основания.

(к рис.2,3). Заменить условие теоремы, сохранить её заключение. Опираясь на признаки равенства прямоугольных треугольников, ученики приходят к выводу о том, что можно потребовать равенство углов между боковыми рёбрами и плоскостью основания или равенство углов между боковыми рёбрами и высотой пирамиды.

Рисунок 1

Рисунок 2

Рисунок 3

1)Боковые рёбра равны

АМ=ВМ =СМ

Доказать: АО = ВО = СО

2)…(углы между боковыми рёбрами и плоскостью основания равны)

Доказать: АО = ВО = СО

3) …(углы между боковыми ребрами и высотой пирамиды равны)

Доказать: АО=ВО=СО

Итак, из каких условий можно сделать вывод, что основание высоты пирамиды совпадает с центром окружности, описанной около основания ?

2.2. Сформулируем обратные утверждения. Верны ли эти утверждения?

Ученики, используя признаки равенства прямоугольных треугольников, доказывают обратные утверждения. Дано: МАВС треугольная пирамида, МО – высота пирамиды, О – центр окружности, описанной около основания, АО=ВО=СО.

Рисунок 4

Рисунок 5

Рисунок 6

Доказать: боковые рёбра равны АМ=ВМ =СМ Доказать: углы между боковыми рёбрами и плоскостью основания равны Доказать: углы между боковыми ребрами и высотой пирамиды равны

2.3. Формулировка теоремы для n-угольной пирамиды.

Постановка проблемы: справедливо ли данное утверждение для n-угольной пирамиды? Ученикам предлагается доказать три прямых утверждения по аналогии.

Теорема. В n-угольной пирамиде с равными боковыми рёбрами основание высоты совпадает с центром окружности, описанной около основания; высота составляет равные углы с боковыми ребрами; боковые ребра составляют равные углы с плоскостью основания.

Рисунок 7.

 2.4. Работа после доказательства теоремы (взгляд назад).

А – Боковые рёбра пирамиды равны

В – Боковые рёбра пирамиды составляют с плоскостью основания равные углы

С – Боковые рёбра пирамиды составляют с высотой пирамиды равные углы

М – Основание пирамиды совпадает с центром окружности, описанной около основания

Учитывая все 6 простых теорем, ученики подводятся к выводу

А, А, А

В, В, В ,

М, М

С, С, С

2. Учитель показывает утверждении А( В, С,М), ученик формулирует 3 простые теоремы.

III. Формулировка темы урока. (Свойства пирамиды с равными боковыми ребрами).

Какая же тема сегодняшнего урока? (Любое из утверждений А, В, С, М может быть принято за тему урока).

IV. Составление алгоритма

Дано: треугольной пирамиды МАВС, МО – высота пирамиды. Определить высоту пирамиды.

Алгоритм решения двух шаговых задач.

1. Наличие в условии задачи одного из условий (А,В,С,). Из этих условий вытекает М.

2. Решить основание (найти радиус окружности, описанной около основания).

3. Решить прямоугольный треугольник, например, МОА.

1. Составление алгоритма.

2. Актуализация знаний:

а) центр окружности, описанной около основания – точка пересечения серединных перпендикуляров к сторонам треугольника;

б) расположение центра описанной окружности в остроугольном, тупоугольном, прямоугольном треугольниках;

в) формула S = .

V. Применение свойств пирамиды с равными боковыми ребрами к решению задач.

Задача 1. В основании пирамиды лежит равнобедренный прямоугольный треугольник с катетом, равным 2. Боковые рёбра наклонены к плоскости основания под углом 600.

Найти высоту пирамиды.

Рисунок 8

1.Каждый ученик получает лист с условиями задач для решения

2. Стереометрический чертёж не делаем.

Решение. Работаем по алгоритму:

Наличие условия “ В”

Выполняем чертёж основания. О - середина гипотенузы, АВ = 4, R = 2

Строим треугольник АМО, находим МО = 6 Ответ: 6

Задача 2. Основание пирамиды – треугольник, две стороны которого 2 и и образуют угол 450. Каждое боковое ребро равно . Найти высоту пирамиды.

Рисунок 9

Решение. Работаем по алгоритму:

1. Наличие условия “А”.

2. Выполняем чертёж основания. По теореме косинусов находим третью сторону ( ),значит, треугольник равнобедренный и прямоугольный. О - середина гипотенузы. Гипотенуза равна 2, R = 1

3. Строим треугольник АМО, находим МО = 3 Ответ: 3

Задача 3 В основании пирамиды лежит треугольник со сторонами 5, 12, 13. Угол между высотой и каждым боковым ребром 450. Найти высоту пирамиды.

Рисунок 10

Решение. Работаем по алгоритму:

1. Наличие условия “ С”

2. Выполняем чертёж основания. По теореме, обратной теореме Пифагора выясняем, треугольник – прямоугольный, О - середина гипотенузы,

АВ = 13, R = 6,5

3.Строим треугольник АМО -равнобедренный, находим МО =6,5 Ответ: 6,5

Задача4 Основание пирамиды – равнобедренный треугольник, боковые стороны которого равны и образуют угол 1200 . Каждое боковое ребро равно . Найти высоту пирамиды.

Рисунок 11

Решение .Работаем по алгоритму:

1. Наличие условия “ А” .

2. Выполняем чертёж основания. угол А - тупой,

О – вне треугольника,

АО – серединный перпендикуляр к ВС, треугольник АОС равносторонний, АВ =,

R = .

3.Строим треугольник АМО, МО = = 6 Ответ: 6

VI. Итог урока подвести при решении задач:

1. В основании пирамиды лежит трапеция, боковые рёбра равны. Определить вид трапеции (равнобедренная).

2. В основании пирамиды лежит параллелограмм, углы между боковыми рёбрами и плоскостью основания равны. Определить вид параллелограмма( прямоугольник).

3. В основании пирамиды лежит ромб. Углы между боковыми рёбрами и высотой пирамиды равны. Найти углы ромба. (90о).