Тема урока: "Двоичная арифметика"

Разделы: Информатика


Цель:

  • познакомить учащихся с двоичной системой счисления, указать ее недостатки и преимущества использования в вычислительной технике;
  • развивать логическое мышление; формировать навыки выполнения арифметических действий с двоичными числами;
  • прививать интерес к предмету.

Программно-дидактическое обеспечение: ПК, программа Калькулятор.

Ход урока

I. Организационный момент

Приветствие, проверка отсутствующих.

1. Постановка целей урока

– Сколько будет:

10001102 + 10101012;
1000111101112/1011012;
11100011102 – 110102;
1011012 * 1000112

После предложенных ответов учащихся, комментирую и объясняю, что сегодня на уроке мы научимся правильно выполнять арифметические действия в двоичной системе счисления.

2. Человек не ведет счет в двоичной системе, т.к. она для него не удобна. А кто или что использует ее для счета и почему?

II. Изложение нового материала

Двоичная система счисления

Из всех позиционных систем счисления особенно проста и поэтому интересна двоичная система счисления.

– Чему равно основание двоичной системы счисления? (q = 2)

– Какой вид имеет развёрнутая форма записи двоичного числа? (А2n-1*2n-1+ …a0*20+ a-1*2-1+…a-m*2-m, где аi равно 1 или 0.)

Двоичная система счисления издавна была предметом пристального внимания многих учёных. П.С.Лаплас писал о своём отношении к двоичной (бинарной) системе счисления великого математика Г.Ф.Лейбница: «В своей бинарной арифметике Лейбниц видел прообраз творения. Ему представлялось, что единица представляет божественное начало, а нуль – небытие и что высшее существо создает всё из небытия точно таким же образом, как единица и нуль в его системе выражают все числа ». Эти слова подчеркивают удивительную универсальность алфавита состоящего всего из двух символов.

Двоичная арифметика.

Для того чтобы лучше освоить двоичную систему счисления, необходимо освоить выполнение арифметических действий над двоичными числами.

Все позиционные системы «одинаковы», а именно, во всех них арифметические операции выполняются по одним и тем же правилам:

  • справедливы одни и те же законы арифметики: коммуникативный, ассоциативный, дистрибутивный;
  • справедливы правила сложения, вычитания, умножения и деления столбиком;
  • правила выполнения арифметических операций опираются на таблицы сложения и умножения.

Сложение.

Таблица сложения двоичных чисел проста.

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 10
1 + 1 + 1 = 11

При сложении двух единиц происходит переполнение разряда и производится перенос в старший разряд. Переполнение разряда наступает тогда, когда величина числа в нем становится равной или большей основания.

Пример.

Вычитание.

0 – 0 = 0
0 – 1 = 11
1 – 0 = 1
1 – 1 = 0

Вычитание многоразрядных двоичных чисел происходит в соответствии с вышеприведённой таблицей вычитания с учетом возможных заёмов из старших разрядов.

Пример.

Умножение.

Операция умножения выполняется с использованием таблицы умножения по обычной схеме (применяемой в десятичной системе счисления) с последовательным умножением множимого на очередную цифру множителя.

Пример.

Деление.

При делении столбиком приходится в качестве промежуточных результатов выполнять действия умножения и вычитания.

Пример.

III. Закрепление изученного

Решите задачи.

Выполните сложение:

1001001 + 10101 (ответ 1011110);
101101 + 1101101 (ответ 10011010)
11000,11 + 11010,11 (ответ 110011,1)

Выполните вычитание:

10001000 – 1110011 (ответ 10101)
1101100 – 10110110 (ответ – 1001010)
110101,101 – 1001,111 (101011,11)

Выполните умножение:

100001*111,11 (ответ: 11111111,11)
10011*1111,01 (ответ: 100100001,11)

Выполните деление:

1000000 / 1110 (ответ:100)
11101001000/111100 (ответ: 11111)

IV. Итоги урока

Оценивание работу учащихся, назвать отличившихся на уроке.

V. Домашнее задание

Выучить правила выполнения арифметических действий в двоичной системе счисления, а так же таблицы сложения, вычитания и умножения в двоичной системе счисления.

Выполните действия:

  1. 110010 + 111,01;
  2. 11110000111 – 110110001;
  3. 10101,101 * 111;
  4. 10101110/101.

Составьте таблицы сложения и умножения в троичной и пятеричной системе счисления.