Математика – одна из древнейших, важнейших и сложнейших компонентов человеческой культуры. История математики тысячами нитей связана с историей других наук. Народная мудрость гласит, что невозможно понять подлинный смысл настоящего и цели будущего, если не знать и не ценить прошлое. Жизнь не стояла на месте. С развитием человечества появляется потребность передавать известия друг другу, писать, считать. Так в далёком прошлом постепенно зарождалась математика. Древние греки были удивительно талантливым народом, у которого есть чему поучиться даже сейчас. В те времена Греция состояла из многих мелких государств. Каждый раз, когда приходилось решать какой-нибудь важный государственный вопрос, горожане собирались на площади, обсуждали его, спорили, а потом голосовали. Они были хорошими "спорщиками". По преданию, в то время сложилось утверждение: " В споре рождается истина!" Греки отличались трудолюбием и смелостью. Среди них были отличные строители, мореплаватели, купцы и художники. Они внесли большой вклад в развитие культуры и науки, особенно математики. Истории известно что ученые-математики древней Греции были крупнейшими математиками в далеком прошлом и задачи, составленные ими интересны и в наши дни. Весьма большая часть нашего современного школьного курса математики, особенно геометрии, была известна древним грекам. Учитель никогда не начнет изложения новой темы, не говоря о новом разделе математики, без вводной исторической части, вызывающей интерес и внимание учеников. Уроки с привлечением исторического материала никого не оставляют равнодушными. Как, знакомя учеников с начальными понятиями геометрии 7 класса, не рассказать о греческой математике?..Как изучая тему “Площадь” 8 кл. не объяснить измерение площадей в Древней Греции (решение старинных задач). Именно здесь так устанавливается связь исторических сведений с материалом рассматриваемой темы. История математики выступает средством активизации познавательной деятельности учащихся. А это является основой учебной деятельности по той причине, что:
– интерес способствует формированию глубоких и прочных знаний;
– развивает и повышает качество мыслительной деятельности, активность в учении, благоприятствует формированию способностей;
– создает более благоприятный эмоциональный фон для протекания всех психических процессов.
Экскурс в историю можно сопровождать картинками, слайдами, презентацией. Математика со времени её зарождения как науки и много раньше была тесно связана не только с цивилизацией, с практикой, но и со всей общечеловеческой культурой – со всем миром. И математические теории, и методы открывались, создавались конкретными личностями, математиками, жизнь и судьба которых, интересная и насыщенная, поучительная и порой трагическая, неотделима от исторической эпохи, в которую они творили.
Ученые Греции
Расскажем о Пифагоре, именем которого названа теорема, которую знают все. В Древней Греции жил ученый Пифагор (родился он около 580 г. до н. э., а умер в 500 г. до н. э.). О жизни этого ученого известно немного, зато с его именем связано ряд легенд. Рассказывают, что он много путешествовал, был в Индии, Египте, Вавилоне, изучал древнюю культуру и достижения науки разных стран. Вернувшись на родину, Пифагор организовал кружок молодежи из представителей аристократии. В кружок принимались с большими церемониями после долгих испытаний. Каждый вступающий отрекался от своего имущества и давал клятву хранить в тайне учения основателя. Так на юге Италии, которая была тогда греческой колонией, возникла так называемая пифагорейская школа. Пифагорейцы занимались математикой, философией, естественными науками. Ими было сделано много важных открытий в арифметике и геометрии. В школе существовал декрет, по которому авторство всех математических работ приписывалось Пифагору. Пифагор был убит в уличной схватке во время народного восстания. После его смерти ученики окружили имя своего учителя множеством легенд, так что установить о Пифагоре правду невозможно. Теорема Пифагора имеет богатую историю. Оказывается, она задолго до Пифагора была известна египтянам, вавилонянам, китайцам и индийцам. Доказательство самого Пифагора до нас не дошло. В настоящее время имеется свыше 100 доказательств. Возможно, что одно из них принадлежит Пифагору и его ученикам.
Архимед – вершина научной мысли древнего мира. Архимед родился в 287 году до нашей эры в греческом городе Сиракузы, где и прожил почти всю свою жизнь. Отцом его был Фидий, придворный астроном правителя города Герона. Учился Архимед в Александрии, где правители Египта Птолемеи собрали лучших греческих ученых и мыслителей, а также основали самую большую в мире библиотеку. Основные работы Архимеда касались различных практических приложений математики, физики, гидростатики и механики. В сочинении "Параболы квадратуры" Архимед обосновал метод расчета площади параболического сегмента, причем сделал это за две тысячи лет до открытия интегрального исчисления. В труде "Об измерении круга" Архимед впервые вычислил число "пи" – отношение длины окружности к диаметру – и доказал, что оно одинаково для любого круга. Архимед, погибший при захвате римлянами его родного города Сиракузы в то время, когда пришел римский солдат. По преданию, Архимед был увлечен решением геометрической задачи, чертеж которой был выполнен на песке. Солдат, убивший Архимеда, или не знал о приказе военачальника сохранить жизнь Архимеду, или не узнал Архимеда. В наше время имя Архимеда связывают главным образом с его замечательными математическими работами, однако в античности он прославился также как изобретатель различного рода механических устройств и инструментов, о чем сообщают авторы, жившие в более позднюю эпоху. Считается, что Архимед был изобретателем т.н. архимедова винта, который служил для подъема воды на поля и явился прообразом корабельных и воздушных винтов.
- Вызывает сомнение и подлинность истории, что будто бы царь поручил Архимеду проверить, из чистого ли золота сделана его корона или же ювелир присвоил часть золота, сплавив его с серебром. “Размышляя над этой задачей, Архимед как-то зашел в баню и там, погрузившись в ванну, заметил, что количество воды, переливающейся через край, равно количеству воды, вытесненной его телом. Это наблюдение подсказало Архимеду решение задачи о короне, и он, не медля ни секунды, выскочил из ванны и, как был нагой, бросился домой, крича во весь голос о своем открытии: “Эврика! Эврика!” (греч. “Нашел! Нашел!”)”.
- При обороне Сиракуз от осаждавших этот город римских войск Архимед создал подъемные и метательные машины, а “зажигательное зеркало”, с помощью которого он якобы сжег корабли доныне остается загадкой, волнующей умы исследователей.
- Сохранившиеся математические сочинения Архимеда можно разделить на три группы. Сочинения первой группы посвящены в основном доказательству теорем о площадях и объемах криволинейных фигур или тел. Сюда относятся трактаты “ О шаре и цилиндре, Об измерении круга, О коноидах и сфероидах, О спиралях и О квадратуре параболы”. Вторую группу составляют работы по геометрическому анализу статических и гидростатических задач: О равновесии плоских фигур, О плавающих телах. К третьей группе можно отнести различные математические работы: О методе механического доказательства теорем, Исчисление песчинок, Задача о быках и сохранившийся лишь в отрывках Стомахион.
Евклид. Древнегреческий ученый Евклиду принадлежат сочинения по механике, оптике, музыке. Известны его заслуги и в астрономии. Евклиду приписываются также несколько теорем и новых доказательств
Из дошедших до нас сочинений Евклида наиболее знамениты “Начала”, состоящие из 15 книг. В 1-й книге формулируются исходные положения геометрии, а также содержатся основополагающие теоремы планиметрии, среди которых теорема о сумме углов треугольника и теорема Пифагора. При построении правильных многоугольников опять звучит это имя Евклида. XIII книга "Начал" посвящена платоновым телам – правильным многогранникам, красотой которых восхищаемся на уроках стереометрии. Рассматривая вопросы дифференциального и интегрального исчислений на уроках анализа, говорим о том, что идеи, положенные в их основу Ньютоном и Лейбницем в XVII в., уходят своими корнями к методу исчерпывания, открытому еще Евклидом и Архимедом.
Фалес из Милета (ок.625 – ок.547 до н.э.) древнегреческий ученый и государственный деятель, первый из семи мудрецов. Во время путешествий он посетил Египет, где и познакомился с астрономией и геометрией. Легенда рассказывает о том, что Фалес привел в изумление египетского царя Амазиса, измерив высоту одной из пирамид по величине отбрасываемой ею тени Задача. Измерить высоту пирамиды по отбрасываемой ею тени. (Размеры даны в локтях; 1 локоть = 7 ладоням = 466 мм.)
Зачинатель и родоначальник греческой философии и науки. Считается, что Фалес первым доказал несколько геометрических теорем, а именно:
- вертикальные углы равны;
- треугольники с равной одной стороной и равными углами, прилегающими к ней, равны;
- углы при основании равнобедренного треугольника равны;
- диаметр делит круг пополам;
- угол, вписанный в полуокружность, всегда будет прямым.
Фалес определял высоту предмета по его тени, расстояния до кораблей, используя подобие треугольников.
Он сделал ряд открытий в области астрономии, установил время равноденствий и солнцестояний, Определил продолжительность года. Фалес был причислен к группе “семи мудрецов”.
Эратосфен Киренский (ок. 276 – 194 до н.э.) – разносторонний ученый: математик, астроном, географ, историк и филолог. Прославился благодаря изобретению “решета Эратосфена”. В сочинении “ Решето” Эратосфен создал оригинальный метод для “отсеивания” простых чисел. В последовательности натуральных чисел зачеркнем 1. Число 2-простое. Зачеркнём все числа, кратные 2. Число 3– первое из незачеркнутых – простое. Затем зачеркнем всякое число, делящееся на 3, и т. д. Так можно получить сколь угодно большой фрагмент последовательности простых чисел. Во времена Эратосфена писали на восковых дощечках. Числа не зачёркивали, а прокалывали. Отсюда и название метода– решето. Сконструировал прибор – мезолябий для механического решения делосской задачи (удвоения куба).
Осуществил первое измерение размеров земли. Измерив длину 1/50 дуги земного меридиана, Эратосфен вычислил окружность земного шара и получил 25 200 стадий, или 39 960 км, что лишь на 319 км меньше действительного значения.
Герон Александрийский великий физик, математик, механик и инженер древней Греции. Жил предположительно в I-II века до нашей эры в Александрии Египетской. Время жизни отнесено ко второй половине первого века н. э. на том основании, что он приводит в качестве примера лунное затмение 13 марта 62 г. н. э.
Герона относят к величайшим инженерам за всю историю человечества. Он первым изобрёл автоматические двери, автоматический театр кукол, автомат для продаж, скорострельный самозаряжающийся арбалет, паровую турбину, автоматические декорации, прибор для измерения протяженности дорог (древний “таксометр”) и др. Первым начал создавать программируемые устройства (вал со штырьками с намотанной на него веревкой).Одной из главных заслуг Герона Александрийского перед историей, являются книги, написанные им. В них описываются не только собственные изобретения Герона, но и знания других ученых древней Греции. Много работ Герона Александрийского было посвящено Математике. Больше всего в его работах формул по геометрии, задач по вычислению геометрических фигур. Так же здесь описывается и знаменитая формула Герона, с помощью которой можно вычислить площадь треугольника по трем сторонам.
В конце II в. н.э. начинается закат греческой математики.
На фоне общего застоя и упадка резко выделяется гигантская фигура Диофанта.
В III–IV веках нашей эры жил в городе Александрии знаменитый греческий математик Диофант. Почти все математики древности занимались уравнениями. Много внимания им уделял, а главное, много нового внес в способы их решения древнегреческий ученый Диофант.
О Диофанте известно очень мало. Есть основание полагать, что он жил около III в. н.э. Одна группа уравнений, так называемые неопределенные уравнения, до сих пор называются диофантовыми уравнениями. Именно для них он нашел способ решения.
Скудные сведения о Диофанте может дополнить нам лишь надпись на надгробном камне, сформулированная задаДо нас дошли шесть из тринадцати книг “Арифметики”, написанных Диофантом, да предание о надписи на его могильном камне. Эта надпись дает возможность определить продолжительность жизни математика, которого позднее назвали “отцом греческой алгебры”.
Здесь погребен Диофант, и камень могильный
При счете искусном расскажет нам,
Сколь долог был его век.
Велением бога он мальчиком был шестую часть своей жизни;
В двенадцатой части затем прошла его светлая юность.
Седьмую часть жизни прибавим – перед нами очаг Гименея.
Пять лет протекли; и прислал Гименей ему сына.
Но горе ребенку! Едва половину он прожил
Тех лет, что отец, как скончался несчастный.
Четыре года страдал Диофант от утраты такой тяжелой
И умер, прожив для науки. Скажи мне,
Скольких лет достигнув, смерть воспринял Диофант?
Главный труд Диофанта– “Арифметика”, по предположению, состоит из 13 книг. Книга Диофанта “Арифметика” содержала большое количество интересных задач, её изучали математики всех поколений. Книга сохранилась до наших дней. В честь Диофанта назван кратер на Луне.О жизни Метродора, составителя задачи о жизни Диофанта, ничего неизвестно, нет сведений о времени его жизни и смерти. В историю математики древней Греции он вошел как автор задач, составленных в стихах. Задачи Метродора входили в рукописные сборники и имели в своё время большое распространение
Нет сомнений в научности математики Древней Греции. Ни один народ древности не сделал столько для развития математики, как жители Греции. Человеческой природе свойственно уважение к прошлому. Это уважение иногда вызывает у учащихся желание взглянуть на математику как на науку сквозь туман старины, прикоснутся к седой древности, тысячелетним тайнам и загадкам…
Пускай останется извечный мир загадок
Чтоб продолжалась жизнь, не ведая конца.
В. Рождественнский
Список используемой литературы
- Виленкин Н.Я. и др. За страницами учебника математики. М. “Просвещение” АО “Учебная литература” 1996.
- Глейзер Г.И. История математики в школе. М. “Просвещение” 1995.
- Савин А.П. Энциклопедический словарь юного математика. М. “Просвещение” 1995.
- Чистяков В. Д. Старинные задачи по элементарной математике. – Минск: вышэйшая школа, 1978.
- Барвин И. И., Фрибус Е. А. Старинные задачи. Книга для учащихся. – М.: Просвещение,199
- 3. Болгарский Б.В. Очерки по истории математики. -2-е иэд., Выш.школа,1979.
- Крыситский В. Шеренга великих математиков – Варшава: Наша Ксенгарня, 1981.
- Рыбников К.А. История математики – М.: Просвещение, 1994. – 123 – 125 с.