Римская система счисления

Разделы: Математика


В ходе урока учащиеся пополняют свой запас  знаний о непозиционных системах, в частности о  римской системе счисления. Какие числа считаются в этой системе узловыми, по  каким правилам записывают остальные числа, об истории происхождения этих чисел, изменением со времени их записи. Объяснение учителя дополняет сообщение учащегося, который готовит к научно - практической конференции исследовательскую работу по данной теме.

По ходу лекции учитель делает важные записи на доске, а учащиеся  переносят их в свои  тетради.  После объяснения нового  материала учащиеся применяют полученные знания о записи чисел на практике, выполняя тренировочные упражнения. Учащиеся переводят число,  записанное римскими цифрами в запись арабскими, и наоборот, число в римской системе записывают арабскими цифрами. Для выполнения этого задания на каждой парте лежат  по две карточки, на которых написано число римскими и арабскими цифрами. Учащиеся, работая в паре, должны осуществить взаимный переход.

Далее вниманию учащихся предлагается несколько занимательных, творческих задач, среди которых и задачи со спичками. Выполняя  это задание,   учащиеся могут работать в группах, оформляя решение  маркерами на листах формата А-3. Все группы работают над одним и тем же заданием, а затем по одному  представителю от каждой группы показывают решение одной из задач у доски.

Для подведения итогов урока и рефлексии учитель использует прием «Незаконченные предложения» или анкету «Как прошел урок», а также прием «Цветовая феерия».
В качестве домашнего задания учащимся предлагается составить викторину или тест из 5-7 вопросов на проверку знаний и умений по изученной теме.

Тип урока: комбинированный.

Цель урока: повышение интереса к предмету за счет использование богатого исторического, наглядного материала, занимательных задач; расширение кругозора обучающихся.

ХОД УРОКА

I. Организационный момент

II. Объяснение нового материала (экскурс в историю)

Вступительное слово учителя: На последнем уроке математики мы с вами познакомились с различными непозиционными системами счисления, а в частности с египетской, китайской и славянской нумерацией. Сегодня мы  поговорим подробно о римской системе счисления,  которая тоже является непозиционной.
Вопрос к вам, ребята: Какая система называется непозиционной?

Ответ учащихся:Cистема называется непозиционной, если значение знака не зависит  от его положения в записи числа.
Римской системой счисления пользовались в Европе в средние века, но и в настоящее время без неё нельзя обойтись во многих областях. Что вам известно про эту нумерацию?
У римлян были специальные обозначения для чисел 1, 5, 10, 50, 100, 500, 1000. Римские цифры имели такой вид:

1 5 10 50 100 500 1000
I V X L C D M

Эти семь чисел назывались узловыми и с их помощью можно записать любое многозначное число. Первоначально римские цифры немного отличались от тех цифр, какими мы привыкли пользоваться сейчас. Они претерпели небольшие изменения в написании.
О происхождении римских цифр нет достоверных сведений, по этому поводу среди ученых до сих пор идут споры. Существует несколько взглядов на эту проблему.
Посмотрите внимательно на цифры 1, 5 и 10. На что они похожи?

Ответ: 1 – палочка, 10 – крест, мы видели их на обозначении группы крови, в учебнике истории.

– А есть ли что-то у человека, с чем можно связать эти обозначения?

Ответ: один – один палец, 5 – ладошка, рука, десять – две руки.

– Действительно, ребята, существует мнение, что цифры I,V,X есть суть палец,  открытая рука и две такие руки. Но есть и другое объяснение этому факту.

Выступление учащегося: Первоначально числа от одного до девяти обозначалось соответственным числом вертикальных палочек. Когда счет шел десятками, нарисовав девять палочек, десятой их перечеркивали. А чтобы не писать так много палочек, перечеркивали одну палочку. Отсюда и произошел знак X.

Вопрос учащимся: Посмотрите на знаки обозначающие числа 5 и 10. Есть ли между ними какая то связь?

Ответ: Пять – это половина от десяти, галочка – половинка крестика.

Действительно, число 5 обозначалось половиной такого креста, обозначающего число  1о. Причем соседи римлян этруски, завоеванные Римской империей, употребляли для числа 5 нижнюю часть креста, а сами римляне верхней.
Для обозначения числа 100 перечеркивали палочку два раза или применяли кружок с точкой внутри. Очевидно, 50 обозначалось половиной этого знака. Число 1000 изображалось значком (I), а число 500 знаком I).
Также возможно, для обозначения числа 100 (centum) стали писать С, а для 1000(mille) букву M. Когда-то слово «миля» обозначало путь в тысячу двойных шагов.

Выступление учащегося: римские цифры долго держались в школьных учебниках и после проникновения в Европу  современных цифр и поэтому назывались школьными.

Вопрос: Как вы считаете ребята, удобна ли римская нумерации в использовании?

Ответ: Римская нумерация не слишком удобна, чтобы записать даже некоторые однозначные цифры нужно писать два знака, для записи многозначного – еще больше.  Выполнение  арифметических действий над многозначными числами в этой записи очень трудно.

– Да, ребята, вы совершенно правы, у римской нумерации есть свои определенные недостатки и неудобства. Но темнее менее, римская нумерация преобладала в Италии до 13 века, а в некоторых странах Западной Европы до XVI века. Когда-то римляне завоевали многие страны и присоединили к своей империи.   Со всех стран взимали огромные налоги, используя свои обозначения. Так что пришлось жителям этих  стран учить римскую нумерацию, посылая проклятия на головы поработителей.

– Мы с вами не являемся жителями стран  Римской империи, тогда для чего нам  с вами в настоящее время знать римскую нумерацию?

Ответ: Чтобы понимать время на часах, определять дату в учебнике истории или у экспоната в музее, на уроке математики, в художественной литературе, для обозначения номера главы и т.п.

Вопрос: Если в римской нумерации есть только обозначения для цифр 1,5,10, 50, 100, 500, 1000, то, как записывать остальные числа?

Ответ: Для этого есть определенные правила. Остановимся на них подробнее (читают правила в учебнике с комментариями).

1. Если цифра с большим значением стоит слева от цифры с меньшим значением, то их значение складывается. Например: 6 – VI, 11 – XI, 60 – LX
2. Если цифра с меньшим значением стоит слева от цифры с большим значением, то из большего вычитается меньшее. Например: 4 – IV, 9 – IX, 40 – XL, 90 – XC.
3. Если рядом стоят две одинаковые цифры, то их значение складывается. Например: СС – 200, XX – 20.
4. Одна и та же цифра не может быть написана подряд более трех раз.

III. Практическое применение правил для перевода арабских цифр в римскую нумерацию и наоборот

– Сейчас мы с вами потренируемся записывать числа  арабскими цифрами и наоборот, переходить в римскую нумерацию. У каждого на столе две карточки. Я попрошу вас число, записанное римскими цифрами записать арабскими, а записанное арабскими записать римскими. На выполнение задания у вас две минуты. Это задание вы выполняете в парах с соседом по парте.

Учащимся предлагаются следующие числа:

  • В римской нумерации: CCC, LIX, XCV, LX, СXV, LXI, XVI, XIV, ССX, XXIX, XXII, LXXXIX, XLIV, DXL, LXXII
  • Записанные  арабскими цифрами: 9,15,29,49,427,41,58,67,99,1002,600,103,124,593,1541.

Для проверки правильности выполнения задания учитель показывает на доске число, записанное римскими цифрами, а учащийся, у которого имеется карточка с этим числом  записанное арабскими цифрами, должен её поднять и показать классу. Соответственно, когда учитель показывает число, записанное  арабскими цифрами, ученик показывает карточку с записью этого числа в римской нумерации. Если возникает заминка, это число разбирают всем классом.
Для выполнения следующего задания я попрошу вас разделиться на малые группы по 4 человека. Каждой группе предлагается решить творческое задание на применение знаний о римской нумерации. В течение 5 минут ребята выполняют это задание на листах формата А-4, а затем представляют решение всему классу.

На этом уроке учащимся были предложены следующие задачи:

  • Сколько  и каких чисел в римской системе счисления можно записать, используя только три спички?
  • Нельзя ли из трех спичек сделать шесть, не ломая их?
  • Как из двух спичек сделать десять, не ломая их?
  • Как записать число 30 , чтобы оно при зеркальном отражении не изменяло своего значения?
  • С помощью девяти спичек составлено число 300. Не изменяя количества спичек, уменьшите число в 3 раза.
  • Из спичек составлено равенство: VI – IV = XI. Как получит верное равенство, переложив всего одну спичку?
  • В харчевню пришли 11 человек и попросили подать им рыбы. Хозяин харчевни решил не упускать случая поживиться: имея в своем распоряжении три рыбы, он обещал подать на стол гостям  одиннадцать. Гости заинтересовались и даже согласились заплатить деньги вперед. Как хозяин исполнил свое обещание?

Представители от каждой группы по очереди у доски представляют решение своей задачи.

IV. Подведение итогов урока, рефлексия, домашнее задание: составить викторину из пяти вопросов, проверяющих   знания и умения по римской системе счисления.