Способы решения показательных уравнений

Разделы: Математика


Урок посвящен изучению нового материала и построен в форме лекции с элементами беседы.  Показательные уравнения являются обязательным элементом подготовки выпускников, а потому достаточно часто встречаются в заданиях ЕГЭ. На последующих уроках отрабатываются рассмотренные способы решения показательных уравнений. Для более полного усвоения темы учащиеся выполняют индивидуальное задание, состоящее из 10 уравнений различных видов. Урок сопровождается компьютерной презентацией (Приложение 1).

1. Изучение нового материала

Определение Уравнение, в котором переменная содержится в показателе степени, называется показательным.

Примеры показательных уравнений:

В ходе беседы выявляется характерная особенность этих уравнений – переменная находится в показателе степени. Далее учащимся на интерактивной доске предлагается задание, направленное на «узнавание» показательных уравнений. Анимация настроена так, что при верном выборе уравнение увеличивается в размере. 

Выберите показательные уравнения:

Учащиеся выбирают уравнения №№ 2, 3, 4, 6, 8, эти уравнения предлагается записать в тетрадь для решения дома.

2. Способы решения показательных уравнений

Выделяют две группы способов: графический и аналитические.

2.1. Вспомним суть графического способа решения уравнений:

  1. Построить графики двух функций (левая и правая части уравнения);
  2. Найти абсциссы точек пересечения графиков;
  3. Записать ответ.

Рассмотрим графический способ решения на примере уравнения 2x = 4  Построим графики функций y = 2x, y = 4 и найдем абсциссу точки пересечения графиков: x = 2.

Ответ: x = 2

Графический способ можно применить не всегда, поэтому рассмотрим более универсальные основные аналитические способы решения показательных уравнений.

2.2. Аналитические способы:

  1. Приравнивание показателей;
  2. Вынесение общего множителя за скобки;
  3. Введение новой переменной;
  4. Использование однородности.

Рассмотрим каждый способ подробнее и разберем на примере.

2.2.1. Приравнивание показателей.

Суть метода:

1. Уединить слагаемое, содержащее переменную;
2. Привести степени к одному основанию;
3. Приравнять показатели;
4. Решить полученное уравнение;
5. Записать ответ.

Пример:

 

Ответ: x = 3

2.2.2. Вынесение общего множителя за скобки

Примечание: выносим за скобки множитель с меньшим показателем.

Пример:


Ответ: x = 1

2.2.3. Введение новой переменной

Как правило, уравнения, решаемые этим способом, сводятся к квадратным.

Пример:

Пусть 4x = а тогда уравнение можно записать в виде:

 

Сделаем обратную замену:

4x = 4 или 4x = 1;
х = 1  или х = 0

Ответ: х = 1 или х = 0

2.2.4. Использование однородности

Определение Показательные уравнения вида  называются однородными.

Суть метода: Так как показательная функция не может принимать значение, равное нулю, и обе части уравнения можно делить на  одно и то же не равное нулю число, разделим обе части уравнения, например, на .

Пример: 2x = 3x

Разделим обе части уравнения на

Ответ: x = 0

3. Первичное закрепление материала

Учащимся предлагается выбрать способ решения для каждого из уравнений, записанных в тетради  для решения дома:

Далее на интерактивной доске решаются уравнения (после решения уравнение «растворяется», и появляется новое, что очень удобно):

4. Подведение итогов урока, домашнее задание

Итоги урока: вопросы, обсуждение того, что на уроке было непонятно, что понравилось, выставление оценок за урок.

Задание на дом: конспект; выписанные 5 уравнений.

Список литературы

  1. Алгебра и начала анализа. 10-11 кл.: Задачник/ Под ред. А.Г.Мордковича. – М.:Мнемозина, 2003. – 315с.
  2. Кодификатор элементов содержания к уровню подготовки выпускников общеобразовательных учреждений для проведения в 2011 году единого государственного экзамена по математике,  «Федеральный институт педагогических измерений», 2011.
  3. Колмогоров А.Н. Алгебра и начала анализа: Учебник для 10-11 кл.сред.школы. – М.: Просвещение, 1990. – 320 с.
  4. Мордкович А.Г. Алгебра и начала анализа. 10-11 кл.: Учебник. – М.:Мнемозина, 2002. – 375с.