Тип урока: систематизации знаний и промежуточного контроля.
Оборудование: тригонометрический круг, тесты, карточки с заданиями.
Цели урока: систематизировать изученный теоретический материал по определениям синуса, косинуса, тангенса угла; проверить степень усвоения знаний по данной теме и применение на практике.
Задачи:
- Обобщить и закрепить понятия синуса, косинуса и тангенса угла.
- Формировать комплексное представление о тригонометрических функциях.
- Способствовать выработке у учащихся желания и потребности изучения тригонометрического материала; воспитывать культуру общения, умение работать в группах и потребности в самообразовании.
«Кто смолоду делает и думает сам, тот
становится потом, надёжнее, крепче, умнее.
(В.Шукшин)
ХОД УРОКА
I. Организационный момент
Класс представлен тремя группами. В каждой группе консультант.
Учитель сообщает тему, цели и задачи урока.
II. Актуализация знаний (фронтальная работа с классом)
1) Работа в группах по заданиям:
1. Сформулировать определение sin угла.
– Какие знаки имеет sin α в каждой координатной четверти?
– При каких значениях имеет смысл, выражение sin α, и какие значения оно может принимать?
2. Вторая группа те – же вопросы для cos α.
3. Третья группа ответы готовит по тем же вопросам tg α и ctg α.
В это время трое учащихся самостоятельно работают у доски по карточкам (представители разных групп).
Карточка № 1.
Практическая работа.
С помощью единичной окружности вычислить для угла 50 , 210 и – 210
значения sin α, cos α и tg α.
Карточка № 2.
Определить знак выражения: tg 275; cos 370; sin 790; tg 4,1 и sin 2.
Карточка № 3.
1) Вычислить:
2) Сравнить: cos 60 и cos2 30 – sin2 30
2) Устно:
а) Предложен ряд чисел: 1; 1,2; 3; , 0, , – 1. Среди них есть лишние. Какое свойство sin α или cos α могут выражать эти числа (Может ли sin α или cos α принимать эти значения).
б) Имеет ли смысл выражение: cos (–); sin 2; tg 3: ctg (– 5); ; ctg0;
ctg (– π). Почему?
в) Существует ли наименьшее и наибольшее значение sin или cos, tg, ctg.
г) Верно ли?
1) α = 1000 является углом II четверти;
2) α = – 330 является углом IV четверти.
д) Числам соответствует одна и та же точка на единичной окружности.
3) Работа у доски
№ 567 (2; 4) – Найти значение выражения
№ 583 (1-3) Определить знак выражения
Домашнее задание: таблица в тетради. № 567(1, 3) № 578
III. Усвоение дополнительных знаний. Тригонометрия в ладони
Учитель: Оказывается, значения синусов и косинусов углов «находятся» на вашей ладони. Протяните руку (любую) и разведите как можно сильнее пальцы (как на плакате). Приглашается один ученик. Мы измеряем углы между нашими пальцами.
Берется треугольник, где есть угол в 30, 45 и 60 90 и прикладываем вершину угла к бугру Луны на ладони. Бугор Луны находится на пересечении продолжений мизинца и большого пальца. Одну сторону совмещаем с мизинцем, а другую сторону – с одним из остальных пальцев.
Оказывается между мизинцем и большим пальцем угол 90, между мизинцем и безымянным – 30, между мизинцем и средним – 45, между мизинцем и указательным – 60. И это у всех людей без исключения
Если пальцы считать лучами, исходящими из бугра Луны на ладони, то можно считать, что направление мизинца соответствует началу отсчета углов, т.е. 0.
Введем нумерацию пальцев:
мизинец № 0 – соответствует 0,
безымянный № 1 – соответствует 30,
средний № 2 – соответствует 45,
указательный № 3 – соответствует 60,
большой № 4 – соответствует 90.
Таким образом, у нас на руке 4 пальца и запомним формулу:
, n – номер пальца |
№ пальца |
Угол |
Значение |
0 |
0 |
|
1 |
30 |
|
2 |
45 |
|
3 |
60 |
|
4 |
90 |
|
Это просто мнемическое правило. Вообще значение sin α или cos α надо знать наизусть, но иногда это правило поможет в трудную минуту.
Придумайте правило для cos (углы без изменения, а отсчета от большого пальца). Физическая пауза, связанная со знаками sin α или cos α.
IV. Проверка усвоений ЗУН
Самостоятельная работа с обратной связью
Каждый ученик получает тест (4 варианта) и лист с ответами для всех одинаковый.
Тест
Вариант 1
1) При каком угле поворота радиус займет то же положение, что и при повороте на угол 50.
2) Найдите значение выражения: 4cos 60 – 3sin 90.
3) Какое из чисел меньше нуля: sin 140, cos 140, sin 50, tg 50.
Вариант 2
1) При каком угле поворота радиус займет тоже положении, что и при повороте на угол 10.
2) Найти значение выражения: 4cos 90 – 6sin 30.
3) Какое из чисел больше нуля: sin 340, cos 340, sin 240, tg (– 240).
Вариант 3
1) Найдите значение выражения: 2ctg 45 – 3cos 90.
2) Какое из чисел меньше нуля: sin 40, cos (– 10), tg 210, sin 140.
3) Углом какой четверти является угол α, если sin α > 0, cos α < 0.
Вариант 4
1) Найдите значение выражения: tg 60 – 6ctg 90.
2) Какое из чисел меньше нуля: sin(– 10), cos 140, tg 250, cos 250.
3) Углом какой четверти является угол α, если ctg α< 0, cos α> 0.
Ответы:
А 0 |
Б |
В |
Г |
Д |
Е |
Ж |
З |
И |
К |
Л |
М |
Н |
О |
П |
Р |
С |
Т |
У |
Ф |
Х |
Ш |
Ю |
Я |
(слово – тригонометрия ключевое)
V. Сведения из истории тригонометрии
Учитель: Тригонометрия – это достаточно важный раздел математики для жизни человека. Современный вид тригонометрии придал крупнейший математик 18 столетия Леонард Эйлер – швейцарец по происхождению долгие годы работавший в России и являвшийся членом Петербургской академии наук. Он ввел известные определения тригонометрических функций сформулировал и доказал известные формулы, мы их учить будем позже. Жизнь Эйлера очень интересна и я советую познакомиться с ней по книге Яковлева «Леонард Эйлер».
(Сообщение ребят по данной теме)
VI. Подведение итогов урока
Игра «Крестики – нолики»
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
Участвуют двое учащихся самых активных. Их поддерживают группы. Решение заданий записывается в тетрадь.
Задания
1) Найти ошибку
а) sin 225 = – 1,1 в) sin 115 < О
б) cos 1000 = 2 г) cos (– 115) > 0
2) Выразите в градусах угол
3) Выразите в радианах угол 300
4) Какое наибольшее и наименьшее значение может иметь выражение: 1+ sin α;
5) Определите знак выражения: sin 260, cos 300.
6) В какой четверти числовой окружности расположена точка
7) Определите знаки выражения: cos 0,3π, sin 195, ctg 1, tg 390
8) Вычислите:
9) Сравнить: sin 2 и sin 350
VII. Рефлексия урока
Учитель: Где мы можем встретиться с тригонометрией?
На каких уроках в 9 классе, да и сейчас вы применяете понятия sin α, cos α; tg α; ctg α и с какой целью?