Тригонометрия – это просто и понятно

Разделы: Математика, Конкурс «Презентация к уроку»


Презентация к уроку

Загрузить презентацию (2 МБ)


1. Введение.

Подходя к школе, слышу голоса ребят из спортивного зала, иду дальше – поют, рисуют… везде эмоции, чувства. Мой кабинет, урок алгебры, десятиклассники. Вот и наш учебник, в котором курс тригонометрии составляет половину его объема, и в нем две закладки – это те места, где я нашла слова, не относящиеся к теории тригонометрии.

К числу немногих относятся учащиеся, которые любят математику, чувствует ее красоту и не спрашивает, зачем нужно изучать тригонометрию, где применяется изученный материал? Большинство – кто просто выполняет задания, чтобы не получить плохую оценку. И твердо уверены в том, что прикладное значение математики – это получить знания, достаточные для успешной сдачи ЕГЭ и поступления в ВУЗ (поступить и забыть).

Основная цель представляемого урока – показать прикладное значение тригонометрии в различных сферах деятельности человека. Приведенные примеры помогут учащимся увидеть связь этого раздела математики с другими предметами, изучаемыми в школе. Содержание этого урока – элемент профессиональной подготовки учащихся.

Рассказать новое о, казалось бы, давно известном факте. Показать логическую связь между тем, что уже знаем, и то, что предстоит изучить. Немного приоткрыть дверь и заглянуть за рамки школьной программы. Необычные задачи, связь с событиями сегодняшнего дня – вот те приемы, которые я использую для достижения поставленных целей. Ведь школьная математика как предмет способствует не столько обучению, сколько развитию личности, его мышления, культуры.

2. Конспект урока по алгебре и началам анализа (10 класс).

Организационный момент: Расставить шесть столов полукругом (модель транспортира), листы с заданиями для учащихся на столах (Приложение 1).

Объявление темы урока: “Тригонометрия – это просто и понятно”.

В курсе алгебры и начал анализа мы приступаем к изучению тригонометрии, мне хотелось бы рассказать о прикладном значении этого раздела математики.

Тезис урока:

“Великая книга природы может быть прочтена только теми, кто знает язык, на котором она написана, и этот язык – математика”.
 (Г. Галилей).

В конце урока подумаем вместе, смогли ли мы заглянуть в эту книгу и понять язык, на котором она написана.

Тригонометрия острого угла.

Тригонометрия – слово греческое и в переводе означает “измерение треугольников”. Возникновение тригонометрии связано с измерениями на земле, строительным делом, астрономией. А первое знакомство с ней произошло тогда, когда вы взяли в руки транспортир. Обратили вы внимание на то, как стоят столы? Прикиньте в уме: если принять один стол за хорду, то какова градусная мера дуги, которую она стягивает?

Вспомним о мере измерения углов: 1° = 1/ 360 часть окружности (“градус” – от латинского grad – шаг). Знаете ли вы, почему окружность разделили на 360 частей, почему не разбили на 10, 100 или 1000 частей, как это происходит, например, при измерении длин? Расскажу вам одну из версий.

Раньше люди считали, что Земля – это центр Вселенной и она неподвижна, а Солнце совершает за сутки один оборот вокруг Земли, геоцентрическая система мира, “гео” – Земля (Рисунок № 1). Вавилонские жрецы, проводившие астрономические наблюдения, обнаружили, что в день равноденствия Солнце от восхода до заката описывает на небесном своде полуокружность, в которой видимый поперечник (диаметр) Солнца укладывается ровно 180 раз, 1° – след Солнца. (Рисунок № 2).

Долгое время тригонометрия носила чисто геометрический характер. В вы продолжаете знакомство с тригонометрией, решая прямоугольные треугольники. Узнаёте, что синус острого угла прямоугольного треугольника – это есть отношение противолежащего катета к гипотенузе, косинус – отношение прилежащего катета к гипотенузе, тангенс – отношение противолежащего катета к прилежащему катету и котангенс – отношение прилежащего катета к противолежащему. И запоминаете, что в прямоугольном треугольнике, имеющем данный угол, отношения сторон не зависят от размеров треугольника. Знакомитесь с теоремами синусов и косинусов для решения произвольных треугольников.

В 2010 году московскому метрополитену исполнилось 75 лет. Каждый день мы спускаемся в метро и не замечаем, что …

Задача № 1. Угол наклона всех эскалаторов московского метро равен 30 градусам. Зная это, количество ламп на эскалаторе и примерное расстояние между лампами, можно вычислить примерную глубину заложения станции. На эскалаторе станции “Цветной бульвар” 15 ламп, а на станции “Пражская” 2 лампы. Рассчитайте, какова глубина заложения этих станций, если расстояния между лампами, от входа эскалатора до первой лампы и от последней лампы до выхода с эскалатора равны 6 м (Рисунок № 3). Ответ: 48 м и 9 м

Домашнее задание. Самая глубокая станция московского метро – “Парк Победы”. Какова глубина её заложения? Предлагаю вам самостоятельно найти недостающие данные для решения домашней задачи.

У меня в руках лазерная указка, она же – дальномер. Измерим, например, расстояние до доски.

Китайский дизайнер Хуань Цяокун догадался соединить в одно устройство два лазерных дальномера, транспортир и получил инструмент, позволяющий определять расстояние между двумя точками на плоскости (Рисунок № 4). Как вы думаете, с помощью какой теоремы решается эта задача? Вспомните формулировку теоремы косинусов. Согласны ли вы со мной, что ваших знаний уже достаточно для того, чтобы сделать такое изобретение? Решайте задачи по геометрии и совершайте каждый день маленькие открытия!

Сферическая тригонометрия.

Помимо плоской геометрии Евклида (планиметрии) могут существовать и другие геометрии, в которых рассматриваются свойства фигур не на плоскости, а на других поверхностях, например на поверхности шара (Рисунок № 5). Первый математик, заложивший фундамент для развития неевклидовых геометрий был Н.И. Лобачевский – “Коперник геометрии”. С 1827 г. в течение 19 лет он был ректором Казанский Университета.

Сферическая тригонометрия, являющаяся частью сферической геометрии, рассматривает соотношения между сторонами и углами треугольников на сфере, образованных дугами больших кругов на сфере (Рисунок № 6).

Исторически сферическая тригонометрия и геометрия возникли из потребностей астрономии, геодезии, навигации, картографии. Подумайте, какое из этих направлений в последние годы получило столь бурное развитие, что его результат уже применяется в современных коммуникаторах. … Современное применение навигации – это система спутниковой навигации, которая позволяет определить местоположение и скорость объекта по сигналу его приемника.

Глобальная Навигационная Система (GPS). Для определения широты и долготы приемника необходимо, как минимум, принимать сигналы от трех спутников. Прием сигнала от четвертого спутника позволяет определить и высоту объекта над поверхностью (Рисунок № 7).

Компьютер приемника решает четыре уравнения с четырьмя неизвестными до тех пор, пока не найдется решение, которое проводит все окружности через одну точку (Рисунок № 8).

Знания из тригонометрии острого угла оказались недостаточны для решения более сложных практических задач. При изучении вращательных и круговых движений значение величины угла и круговой дуги не ограничены. Возникла необходимость перехода к тригонометрии обобщенного аргумента.

Тригонометрия обобщенного аргумента.

В качестве модели, с помощью которой математики работают с углами, была выбрана окружность (Рисунок № 9). Положительные углы откладываются против часовой стрелки, отрицательные – по часовой. Знакомы ли вы с историей такого соглашения?

Как известно, механические и солнечные часы устроены так, что их стрелки вращаются “по солнцу”, т.е. в том же направлении, в каком мы видим кажущееся нам движение Солнца вокруг Земли. (Вспомните начало урока – геоцентрическая система мира). Но с открытием Коперником истинного (положительного) движения Земли вокруг Солнца, видимое нами (т.е. кажущееся) движение Солнца вокруг Земли является фиктивным (отрицательным). Гелиоцентрическая система мира (гелио – Солнце) (Рисунок № 10).

Разминка.

  1. Вытянуть правую руку перед собой, параллельно поверхности стола и выполнить круговой поворот на 720 градусов.
  2. Вытянуть левую руку перед собой, параллельно поверхности стола и выполнить круговой поворот на (–1080) градусов.
  3. Положите кисти рук на плечи и сделайте по 4 круговых движения вперед и назад. Какова сумма углов поворота?

В 2010 прошли Зимние Олимпийские игры в Ванкувере, критерии выставления оценок за выполненное упражнение фигуристом мы узнаем, решив задачу.

Задача № 2. Если фигурист совершает поворот на угол 10 800 градусов при выполнении упражнения “винт” за 12 секунд, то он получает оценку “отлично”. Определите, какое количество оборотов совершит фигурист за это время и скорость его вращения (обороты в секунду). Ответ: 2,5 оборота/сек.

Домашнее задание. На какой угол поворачивается фигурист, получивший оценку “неудовлетворительно”, если при таком же времени вращения его скорость была 2 оборота в секунду.

Наиболее удобной мерой измерения дуг и углов, связанных с вращательными движениями, оказалась радианная (радиусная) мера, как более крупная единица измерения угла или дуги (Рисунок № 11). Эта мера измерения углов вошла в науку через замечательные труды Леонарда Эйлера. Швейцарец по происхождению, он 30 лет прожил в России, был членом Петербургской Академии наук. Именно ему мы обязаны “аналитической” трактовкой всей тригонометрии, он вывел формулы, которые вы сейчас изучаете, ввел единообразные знаки:.sin x, cos x, tg x, ctg x.

Если до 17-го века развитие учения о тригонометрических функциях строилось на геометрической основе, то, начиная с 17-го века, тригонометрические функции начали применять к решению задач механики, оптики, электричества, для описания колебательных процессов, распространения волн. Везде, где приходится иметь дело с периодическими процессами и колебаниями, нашли применение тригонометрические функции. Функции, выражающие законы периодических процессов, обладают особым только им присущим свойством: они повторяют свои значения через один и тот же промежуток изменения аргумента. Изменения всякой функции наиболее наглядно передаются на её графике (Рисунок № 12).

Мы уже обращались за помощью к своему организму, при решении задач на вращение. Давайте прислушаемся к биению своего сердца. Сердце – самостоятельный орган. Головной мозг управляет любой нашей мышцей, кроме сердечной. У нее есть собственный центр управления – синусный узел. При каждом сокращении сердца по всему организму – начиная от синусного узла (размером с просяное зерно)– распространяется электрический ток. Его можно зарегистрировать с помощью электрокардиографа. Он вычерчивает электрокардиограмму (синусоиду) (Рисунок № 13).

Теперь поговорим о музыке. Математика – это музыка, это союз ума и красоты.
Музыка – это математика по вычислениям, алгебра по абстрагированию, тригонометрия по красоте. Гармоническое колебание (гармоника) – это синусоидальное колебание. График показывает, как изменяется воздушное давление на барабанную перепонку слушателя: вверх и вниз по дуге, периодически. Воздух давит то сильнее, то слабее. Сила воздействия совсем невелика и колебания происходят очень быстро: сотни и тысячи толчков каждую секунду. Такие периодические колебания мы воспринимаем как звук. Сложение двух различных гармоник дает колебание более сложной формы. Сумма трех гармоник – еще сложнее, а естественные, природные звуки и звуки музыкальных инструментов складываются из большого количества гармоник. (Рисунок № 14.)

Каждая гармоника характеризуется тремя параметрами: амплитудой, частотой и фазой. Частота колебаний показывает, сколько толчков давления воздуха происходит за одну секунду. Большие частоты воспринимаются как "высокие", "тонкие" звуки. Выше 10 КГц – писк, свист. Маленькие частоты воспринимаются как "низкие", "басовые" звуки, рокот. Амплитуда – это размах колебаний. Чем размах больше, тем сильнее воздействие на барабанную перепонку, и тем громче звук, который мы слышим (Рисунок № 15). Фаза – это смещение колебаний во времени. Фаза может измеряться в градусах или радианах. В зависимости от фазы смещается нулевой отсчет на графике. Для задания гармоники достаточно указать фазу от –180 до +180 градусов, поскольку при больших значениях колебание повторяется. Два синусоидальных сигнала с одинаковыми амплитудой и частотой, но разными фазами складываются алгебраически (Рисунок № 16).

Итог урока. Как вы думаете, смогли мы прочитать несколько страниц из Великой книги природы? Узнав о прикладном значении тригонометрии, стала ли вам более понятна ее роль в различных сферах деятельности человека, понятен ли вам был изложенный материал? Тогда вспомните и перечислите сферы применения тригонометрии, с которыми вы познакомились сегодня или знали ранее. Я надеюсь, что каждый из вас нашел в сегодняшнем уроке что-то новое для себя, интересное. Быть может, это новое подскажет вам путь в выборе будущей профессии, но, кем бы вы ни стали, ваша математическая образованность поможет стать профессионалом своего дела и интеллектуально развитым человеком.

Домашнее задание. Ознакомиться с конспектом урока (Приложение № 2), решить задачи (Приложение № 1).