Материалы для проведения зачетов по темам "Показательные уравнения и неравенства", "Логарифмические уравнения и неравенства"

Разделы: Математика


Главная цель при работе с предлагаемыми билетами:

  1. научить учащихся видеть общее в решении соответствующих уравнений и неравенств и различие при записи ответов;
  2. экономия времени;
  3. умение ориентироваться в содержании данного материала.

Если первая цель не вызывает вопросов, то экономия времени сразу не чувствуется. Хотя именно нехватка времени и сказалась на структуре билетов. Они составлены по единому принципу. Уравнения и неравенства расположены так, чтобы легче было установить соответствие между ними.

И не смотря на рекомендацию учителя: решать уравнение и сразу же за ним оформлять решение соответствующего неравенства, половина учеников предпочитала сначала решить все уравнения из первого столбца, а потом уж приниматься за решение неравенств. При записи ответа обращать внимание на то, что из-за отсутствия корней у уравнения не следует, что и у неравенства не будет решений.

При сдаче второго зачёта уже таких проблем не возникало, так как у многих сформировалось умение “видеть” и выработались определённые навыки.

В каждом билете материал подобран так, что, кроме, уравнений (неравенств), решаемых по определению и свойствам, даны уравнения (неравенства), решаемые разложением на множители; заменой переменных. И, естественно, повторяется решение квадратных уравнений и неравенств, второй степени.

В билетах всего 26 заданий. Поэтому ученикам предлагались такие нормы:“5” – 26 зад. , “4” – 19–25 зад. , “3” – 14–18 зад. , “2” – менее 14 зад.

Ученик, претендующий на оценку “5”, должен успеть решить за урок все уравнения и неравенства. Первые четырнадцать заданий – это обязательный минимум. Зачёт, конечно, можно и пересдать. Но желательно, чтобы укладывались в отведённое время.

При подготовке к ЕГЭ, когда навыки решения уравнений (неравенств) будут уже сформированы, задания могут быть заменены. Например, такие:

  1. указать сумму (произведение) корней уравнения;
  2. указать наименьший (наибольший) корень уравнения;
  3. найти наименьшее (наибольшее) целое решение неравенства;
  4. найти сумму (произведение) целых решений неравенства.

Конечно, каждый учитель может сам дополнить этот список. В зависимости от класса возникает необходимость на одни задания обратить больше внимания, на другие – меньше.

Билеты могут быть использованы как для зачётов, так и для самостоятельных работ. Каждый билет состоит из двух блоков: базовый уровень (1 уровень) и повышенный (2 уровень). Блок состоит из двух частей: уравнения и неравенства, которые разделены на два столбца, чтобы ученику легче было устанавливать соответствие между ними.

Ниже приведено по шесть вариантов билетов по каждой теме. К ним даны ответы.

Приложение 1. Логарифмические уравнения и неравенства.

Приложение 2. Показательные уравнения и неравенства.

Приложение 3. Ответы к билетам по алгебре и началам анализа.