Сложение чисел с разными знаками (6-й класс)

Разделы: Математика

Класс: 6


Цели урока:

  1. Закрепить умения и навыки сложения чисел с разными знаками.
  2. Развивать познавательную деятельность учащихся.
  3. Формировать интерес к предмету.

План урока:

  1. Организационный момент.
  2. Контроль выполнения домашнего задания (так как проверка домашней работы требует времени, тетради в конце урока ученики сдают).
  3. Постановка целей урока.
  4. Актуализация опорных знаний.
  5. Формирование умений и навыков учащихся.
  6. Самостоятельная работа.
  7. Итоги урока.
  8. Домашнее задание.

Ход урока

I. Организационный момент: 1 мин.

(Приветствие, представление гостей, проверка присутствующих, запись числа в тетрадях, запись темы урока).

II. Контроль выполнения домашнего задания: 1 мин.

(Пройти по рядам, посмотреть наличие домашнего задания в тетрадях).

III. Постановка целей урока: 1 мин.

ЗАКРЕПИТЬ УМЕНИЯ И НАВЫКИ СЛОЖЕНИЯ ЧИСЕЛ С РАЗНЫМИ ЗНАКАМИ.

IV. Актуализация опорных знаний. 5 мин.

Задание 1. Перед вами таблица, часть которой пуста. Найдите правило, по которому составлена таблица. По второму и третьему столбцам определите компоненты действий первого столбца и восстановите числа в пустых клетках.

(слагаемое) 2 -3 4 (-6) -12
(слагаемое) -7 6 -5 4 (4)
(сумма) -5 3 (-1) -2 -8

(Ответ: первая и вторая строки – слагаемые, третья строка – их сумма).

Задание 2. Определите, как составлена таблица. В ходе заполнения таблицы была допущена ошибка. Найдите её.

2 -5 -3
-4 11 -7
9 -17 (8)

(Ответ: первый и второй столбцы – слагаемые, третий столбец – сумма;

2+(-5)=-3
–4+11= -7
9+(-17)= -8

в нижней строке последнее число -8 должно иметь знак «минус».)

V. Формирование умений и навыков учащихся. 10 мин. 

Задание 3. Выполните сложение, замените ответы соответствующими буквами и расположите их в таблице на доске. У вас на парте даны маленькие карточки с буквами. Из предложенных примеров вам надо решить те, которые к вашим буквам относятся. На учительском столе взять букву, соответствующую ответу примера, и поместить в таблицу под буквой примера, который вы решили.

М Р Б А У П Г Т Х
2,52 - - -11 15,75 -14 –9,9 0

а) - + = (Б )
б)  + (-)= (Р )
в) - + = (А )
г) -3,91 + 3,91= (Х )
д) 2,77 +(-)= (М )
е)  +(-)= (А )
ж) 2 + (-17)= (Г )
з) -29 + 17= (У )
и) 17 + (-1,25)= (П )
к) -2 +(-7,3)= (Т )
л) 4 +(-4)=. (А )

(На доске таблица, в которой необходимо расположить буквы соответствующие ответам примеров.)

а) б) в) г) д) е) ж) з) и) к) л)
Б Р А Х М А Г У П Т А

(Если в решении примеров допущена ошибка, то эти примеры разобрать на доске.)

Проверяем:

а) -+ = -  + = - (-) = - = -;
б)  + (-) = + (- ) = =;
в) -  +  = -  +  = - ( -  )= -  = - ;
г) -3,91 + 3,91 = 0 ;
д) 2,77 + (- ) = 2,77 – 0,25 = 2,52 ;
е)  + (- ) = + (- )= - (- ) = - ;
ж) 2 + (- 17) = - (17- 2) = - (14- 2) = - 14;
з) - 29 + 17 = - (28 - 17) = - 11 ;
и) 17 + (- 1,25) = 17 – 1,25 = 15,75 ;
к) - 2 + (- 7,3 ) = - 2,6 + (- 7,3 )= - (2,6 + 7,3 ) = - 9,9 ;
л) 4+ (- 4) = 4 + (- 4) =-(4 - 4) = -  = -.

Расположение класса и дифференцированное распределение заданий в парах и индивидуально. (Каждый ученик решает пример под своей буквой; более сильный помогает ученику послабее, проверяют правильность решения в паре.)

Фамилии и имена учащихся б)
г)
 Фамилии и имена учащихся в)
ж)
Фамилии и имена учащихся а)
г)
Фамилии и имена учащихся в)
з)
Фамилии и имена учащихся е)
и)
Фамилии и имена учащихся з)
к)
    Фамилии и имена учащихся л)
ж)
Фамилии и имена учащихся л)
д)

– Итак, вы угадали слово БРАХМАГУПТА. Это имя известного индийского математика, который ж Фамилии и имена учащихся ил в 7 веке. Одним из первых он начал использовать положительные и отрицательные числа. Положительные числа он называл «имущество», а отрицательные – «долги». Сумма двух имуществ – имущество.

Сумма двух долгов – долг.

VI. Самостоятельная работа. 18 мин.

А сейчас проведём с/р по вариантам: 

1 вариант 2 вариант
  1. Выполните сложение:
    а) -543+458=-85
    б) 0,54+(-0,83)=-0,29
    в) -2+3=
    г) -+(-)=-1
    д) 2+(-3)=-
  2. Выполнить действия:
    (-+)+(-0,35)=-0,63.
  3. Решить уравнение:
    (х-3,7)-(-11)=-4,7х=-12
  4. Сколько корней имеет уравнение:
    =-5 ?
  1. Выполните сложение:
    а) 257+(-314)=-57
    б) -0,28+(-0,18)=-0,46
    в) -6+4=-1
    г) -+=-
    д) 2+(-3)=-0,5
  2. Выполнить действия:
    –0,55+(-+)=-0,83.
  3. Решить уравнение:
    (-2,8)-(-12)=-3,8х=-134.
  4. Сколько корней имеет уравнение:
    =-2 ?

Критерии оценивания самостоятельной работы при верном решении:

На «3» – № 1.
«4»:
– № 1 и № 2;

– № 1 и № 3;
– № 1 и № 4;
– № 2, № 3 и №4.
«5» – все задания.

VII. Итоги урока:

Закрыли тетради.

– Итак, мы проверили свои знания по сложению чисел. (Охарактеризовать работу каждого ученика).

Результаты с/р вы узнаете на следующем уроке.

VIII. Домашнее задание.

Домашнее задание предлагается вам в форме аукциона «Я – продавец, вы – благодарные покупатели».

Каждый из вас сам выбирает вариант домашнего задания и за правильное выполнение получает запрограммированную оценку.

Записываем номера в дневник:

Комментарий домашнего задания: 

на стр 198 № 1082 – выполнить сложение дробных чисел с разными знаками;

№ 1083 – найти значение выражения;

№ 1085 – решить уравнение; (обратить внимание на то, что корень уравнения будет число, противоположное числу: –х );

на стр 199 № 1087

на стр 206 № 1120 – эти задания творческие.

№ 1122

кроме того: повторить правила из пунктов 28, 32, 33. 

На «3»
1082
1083
1085 (а, в, д)
1087 (а)
На «4»
1082
1083
1085 (а, в, д)
1120
На «5»
1082
1083
1085 (а, в, д)
1122

Урок окончен, сдайте тетради, можете быть свободными.

Список литературы:

  1. Н.Я. Виленкин, В.И. Жохов, А.С. Чесноков, С.И. Шварцбурд. Математика учебник для 6 класса общеобразовательных учреждений. Мнемозина, Москва, 2002.
  2. Г.И. Григорьева. Математика. 6 класс. Поурочные планы по учебнику Н.Я. Виленкин, В.И. Жохов, А.С. Чесноков, С.И. Шварцбурд. Математика. 6 класс. В двух частях. ИТД Корифей, 2006.

Приложение.