Обучение физики через решение задач

Разделы: Физика


Чтобы научить решать задачи,
надо их решать.
Д.Пойа

После введения цикличности в школьном курсе физики, возникла серьезная проблема: на изучение механики отводился один год, в данный момент одна четверть. В первые два года приходилось тратить на этот раздел все первое полугодие, что приводило к проблемам с изучением материала в конце учебного года.

В итоге решение проблемы было найдено в следующем виде:

  • единый подход к решению всех физических задач;
  • алгоритмы на типовые задачи.

Решение любой физической задачи может быть разбито на четыре этапа:

  1. На основе анализа физического процесса составляется система уравнений.
  2. Математическое решение системы уравнений. (Предварительно решить вопрос о совместности уравнений).
  3. Анализ полученных результатов с точки зрения физики процесса.
  4. Вычисления и оценка реальности результатов.

С другой стороны все задачи можно разделить на задачи двух типов:

  1. Тренировочные задачи. Условие такой задачи содержит все необходимые величины и четко сформулированный вопрос. Проблема решения такой задачи – проблема выполнения определенного алгоритма действий.
  2. Задачи, требующие анализа, результатом которого является разбиение условия на конечное число подзадач 1 типа. Уровень сложности такой задачи определяется соотношением между объемами аналитической и алгоритмической части.

Особое положение занимают «эвристические» задачи, решение которых не может быть сведено к выполнению конечного числа алгоритмов.

В данном материале мы будем рассматривать базовые алгоритмы раздела «Механика».

Решение тренировочных задач темы «Равноускоренное движение»

В идеале задачи этой темы должны решаться на основе только двух формул:

  • закона движения формула1
  • определения ускорения формула2
  • и вспомогательной формулы Sx = x - x0

которая используется, если скорость тела в интересующий нас промежуток времени не изменяла своего направления. Решение задачи начинаться с задания начальных условий (Н.У.) движения (r, v, a при t = 0) и с выбора системы отсчета (если она не задана в условии задачи).

Но это в идеале. За один, два урока при данном подходе с проблемой не справиться, тем более что задача отягощается математическими проблемами при выводе формул  и заданием Н.У.

Решим проблему с начальными условиями:

Пример 1. Мячик бросили вертикально вверх с высоты h0 = 6 м со скоростью v0 = 20 м/с. Определите, через сколько секунд мячик окажется на высоте h = 1 м.

Опустим начало решения и запишем закон движения в проекции на ось Oy: формула3

Зачеркиванием введем Н.У. и при необходимости К.У.

формула4

в итоге получаем частный случай закона движения для нашей задачи: формула5

Разрешить проблему времени позволяет алгоритм, в основе которого лежат шесть формул:

формула6

Формула №1 используется в редких случаях, если в условии задачи задается положение тела.

Формулу № 6 необходимо пробовать в первую очередь если выполняется условие формула7. Для случая v0 = 0 это очевидное следствие формулы №3. Для случая v = 0 требует вывода.

  • Краткая запись условия.
  • Рисунок
    рис.1
  • Анализ краткой записи условия.
  • Математическое решение.
  • Анализ полученного результата.
  • Вычисления.
  • Ответ.

При краткой записи условия необходимо обратить особое внимание на скрытые условия, т.е. величины заданные вербально. На первых этапах достаточно при чтении условия делать остановки в трудных местах условия.

Рисунок необходим для определения знака ускорения через выбор системы координат и проекцию. Проще на этом этапе рисунок заменить комментарием: «разгон», «торможение» или «равноускоренное движение», «равнозамедленное движение». Но во многих методических источниках не рекомендуется использовать термин «равнозамедленное движение» т.к. он сужает границы применения термина «равноускоренное движение» и приводит к невозможности единого описания некоторых видов движения, например  движения под действием силы тяжести. При дальнейшей работе возникают следующие проблемы: учащиеся делят движение под действием силы тяжести на два участка и не воспринимают его как единое целое, описываемое с точки зрения математики одним уравнением, т.е. данный подход не удается обобщить и тему приходится изучать с «нуля».

Анализ краткой записи условия проще объяснить на примере.

Пример 2. На пути  45 метров скорость тела изменилась от 10 м/с до 40 м/с. Определите ускорение тела.

Дано:

S = 45

v = 10 м/с

v0 = 40 м/с

В условии не упоминается время, следовательно необходимо применить формулу формула8

а = ?

Математическое решение. Не первоначальном этапе изучения физики много времени приходится уделять математической обработки результатов. В основном возникают следующие проблемы:

  • Работа с тригонометрическими функциями.
    • В основном мы используем два тригонометрических равенства: cos2α + sin2α = 1 и sin2α = 2 sinα cosα
    • Основные тригонометрические функции: формула9
  •  Работа с уравнениями.   

Мы обычно ругаем математиков за недостаточную подготовку, но некоторые действия, допустимые при решении задач по физике, недопустимы в общей математической практике. Например, с уравнениями можно производить те же действия, что и с числами: сложение, вычитание, умножение и деление. Операция деления ограничена условием – делитель не может быть нулевым, но с точки зрения физического смысла мы уверены, что функция не может быть нулевой или нули функции нам не нужны.

Пример 3.

формула10

быстрее, чем выразить и подставить.

Те же проблемы возникают и при решении квадратных уравнений. Часто до квадратного уравнения можно не доводить, теряя, отрицательные корни, не имеющие физического смысла. Т.е. с учетом физического смысла можно сильно сузить ОДЗ и упростить решение.

Пример 4. Определите внутреннее сопротивление источника тока, если при сопротивлении R1 во внешней цепи выделяется такая же мощность, как и при сопротивлении R2.

формула11

т.к. P1 = P2, следовательно

формула12

Анализ полученного результата включает в себя:

  • проверку размерности как проверку правильности полученной формулы;
  • анализ зависимости искомой величины от данных особенно при их критических значениях;
  • оценку реальности результата.

Вычисления значительно упрощаются при освоении инженерного калькулятора:

  • набора чисел в форме x × 10n;
  • вычисления прямых и обратных тригонометрических функций;
  • вычисления на калькуляторе без дополнительных записей в тетради.

В профильном классе в обязательном порядке проводится зачет, основным вопросом которого является доказательство формул №1–№6.

Алгоритм решения задач на применение законов Ньютона

Алгоритм II.

  • Краткая запись условия;
  • первичный рисунок;
  • Как движется тело? – рисуем скорость и ускорение;
  • С какими телами взаимодействует? – рисуем силы;
  • Если в условии задачи рассматривается вес тела:

Опора                        –         «по 3 з. Ньютона                  Р = N»

Подвес                      –         «по 3 з. Ньютона                  P = T»

Невесомость            –         «по 3 з. Ньютона                  P = 0 = T или Р = 0 = N»

  • Есть ли ускорение?

Да                              –          «по 2 з. Ньютона                формула13»

Нет                            –          «по 1 з. Ньютона                формула14»

  • Сколько на рисунке сил?
  • Запись векторная 1 или 2 з. Ньютона (расширенная).
  • Выбор СО (системы отсчета).
  • Если есть силы не параллельные осям – рисунок их проекций
  • Запись законов Ньютона в проекции на оси СК

F ↑↑ оси        –          знак не меняем

F ↑↓ оси        –          знак меняем

формула15 оси        –          не пишем (проекция равна нулю)

Или смотри рисунок.

  • При необходимости применение закона Гука, закона всемирного тяготения, частных формул для сил….
  • Если в условии есть скорость путь время, применяем формулы кинематики.
  • математическое решение.
  • анализ полученного результата.
  • вычисления.
  • ответ.

Первичный рисунок – на этом этапе часто на рисунке изображаются детали, отсутствующие в условии задачи.

Пример 5. В первых задачах на применение второго закона Ньютона в условии часто написано «На тело массой mдействует сила F». Учащиеся рисуют опору и силу тяжести, хотя в условии их нет и происхождение силы не оговаривается.

Неверно

Верно

рис.2
рис.3

На рисунке желательно придать силе произвольное направление, что подчеркнет свободное условие задачи и даст повод обсудить связь между силой,  ускорением и скоростью с точки зрения причинно – следственной связи.

Пример 6. Тело под действием силы F поднимается вверх с ускорением а.

Не верно

Верно

рис.4
рис.5

(очень распространенная ошибка).

Данные примеры подчеркивают необходимость выполнения рисунка в строгом соответствии с условием задачи и отступления не допустимы.

Рисунок должен занимать не менее трети тетрадного листа.

Сила – это величина, характеризующая взаимодействие тел. Здесь возможны следующие нюансы:

  • Взаимодействие может осуществляется без непосредственного контакта (на первоначальном этапе только взаимодействие с Землей – сила тяжести). По сути это действие на тело гравитационного поля. На профильном уровне имеет смысл ввести понятие поля вместе с понятием силы, рассмотрев теории близкодействия и дальнодействия. Тогда вопрос, «С какими телами взаимодействует тело?» можно сразу разбить на два:
  1. С какими телами взаимодействует тело?
  2. В каких полях находится тело?

В 10 классе возможно рассмотреть гравитационное и электромагнитное поле и подчеркнуть, что взаимодействие при непосредственном контакте на макроуровне это на микроуровне так же действие поля на микрообъект (в случае сил упругости и сил трения – взаимодействия электромагнитного поля одной молекулы с другой молекулой как системой зарядов).

  • Взаимодействие при непосредственном контакте тел.

Есть контакт – есть взаимодействие – есть сила.

Итоги

Описанные алгоритмы, при их активном использовании на уроках позволяют существенно сократить время на приобретения учащимися навыка решения задач. Алгоритмы универсальны и могут применяться в любой теме, что позволяет провести единую линию решения задач по всему школьному курсу физики. Позволяет один раз, затратив учебное время на обучение решению задач, в дальнейшем вводить только новые законы и закономерности подчеркивая единые способы и методы их применения в задачах.

В основе выше приведенного материала лежат следующие общеизвестные технологии:

  • Технология обучения математике на основе решения задач (Р.Г. Хазанкин)
  • Проблемное обучение.
  • Уровневая дифференциация обучения на основе обязательных результатов (В.В. Фирсов)