I. Линейные уравнения
II. Квадратные уравнения
ax2 + bx + c = 0, a ≠ 0, иначе уравнение становится линейным
Корни квадратного уравнения можно вычислять различными способами, например:
Мы хорошо умеем решать квадратные уравнения. Многие уравнения более высоких степеней можно привести к квадратным.
III. Уравнения, приводимые к квадратным.
замена переменной: а) биквадратное уравнение ax2n + bxn + c = 0, a ≠ 0, n ≥ 2
2) симметрическое уравнение 3 степени – уравнение вида
3) симметрическое уравнение 4 степени – уравнение вида
ax4 + bx3 + cx2 + bx + a = 0, a ≠ 0, коэффициенты a b c b a или
ax4 + bx3 + cx2 – bx + a = 0, a ≠ 0, коэффициенты a b c (–b) a
Т.к. x = 0 не является корнем уравнения, то возможно деление обеих частей уравнения на x2, тогда получаем: .
Произведя замену решаем квадратное уравнение a(t2 – 2) + bt + c = 0
Например, решим уравнение x4 – 2x3 – x2 – 2x + 1 = 0, делим обе части на x2,
, после замены получаем уравнение t2 – 2t – 3 = 0
– уравнение не имеет корней.
Ответ:
4) Уравнение вида (x – a)(x – b)(x – c)(x – d) = Ax2, коэффициенты ab = cd
Например, (x + 2)(x +3)(x + 8)(x + 12) = 4x2. Перемножив 1–4 и 2–3 скобки, получим (x2 + 14x + 24)(x2 +11x + 24) = 4x2, разделим обе части уравнения на x2, получим:
имеем (t + 14)(t + 11 ) = 4.
5) Однородное уравнение 2 степени – уравнение вида Р(х,у) = 0, где Р(х,у) – многочлен, каждое слагаемое которого имеет степень 2.
Ответ: -2; -0,5; 0
IV. Все приведенные уравнения узнаваемы и типичны, а как быть с уравнениями произвольного вида?
Пусть дан многочлен Pn(x) = anxn + an-1xn-1 + ...+a1x + a0 , где an ≠ 0
Рассмотрим метод понижения степени уравнения.
Известно, что, если коэффициенты a являются целыми числами и an = 1 , то целые корни уравнения Pn(x) = 0 находятся среди делителей свободного члена a0. Например, x4 + 2x3 – 2x2 – 6x + 5 = 0, делителями числа 5 являются числа 5; –5; 1; –1. Тогда P4(1) = 0, т.е. x = 1 является корнем уравнения. Понизим степень уравнения P4(x) = 0 с помощью деления “уголком” многочлена на множитель х –1, получаем
P4(x) = (x – 1)(x3 + 3x2 + x – 5).
Аналогично, P3(1) = 0, тогда P4(x) = (x – 1)(x – 1)(x2 + 4x +5), т.е. уравнение P4(x) = 0 имеет корни x1 = x2 = 1. Покажем более короткое решение этого уравнения (с помощью схемы Горнера).
1 | 2 | –2 | –6 | 5 | |
1 | 1 | 3 | 1 | –5 | 0 |
1 | 1 | 4 | 5 | 0 |
значит, x1 = 1 значит, x2 = 1.
Итак, (x – 1)2(x2 + 4x + 5) = 0
Что мы делали? Понижали степень уравнения.
V. Рассмотрим симметрические уравнения 3 и 5 степени.
а) ax3 + bx2 + bx + a = 0, очевидно, x = –1 корень уравнения, далее понижаем степень уравнения до двух.
б) ax5 + bx4 + cx3 + cx2 + bx + a = 0, очевидно, x = –1 корень уравнения, далее понижаем степень уравнения до двух.
Например, покажем решение уравнения 2x5 + 3x4 – 5x3 – 5x2 + 3x + = 0
2 | 3 | –5 | –5 | 3 | 2 | |
–1 | 2 | 1 | –6 | 1 | 2 | 0 |
1 | 2 | 3 | –3 | –2 | 0 | |
1 | 2 | 5 | 2 | 0 |
x = –1
x = 1
x = 1
Получаем (x – 1)2(x + 1)(2x2 + 5x + 2) = 0. Значит, корни уравнения: 1; 1; –1; –2; –0,5.
VI. Приведем список различных уравнений для решения в классе и дома.
Предлагаю читателю самому решить уравнения 1–7 и получить ответы…