Активизация познавательной деятельности у детей с неустойчивым вниманием на уроках математики

Разделы: Математика


Каждый учитель сталкивается с проблемой организации учебно-воспитательной работы на уроке для наиболее качественного усвоения материала учащимися, для активизации познавательного интереса к своему предмету, для социального самоопределения, с учетом возрастных и психологических особенностей подростков.

Одной из основных задач при обучении математике является формирование приемов учебной деятельности учащихся по усвоению математических понятий. Важную роль в обучении играет определение этих понятий, которые являются стержнем школьного курса математики. Воспитанники нашей школы в основном относятся к категории слабоуспевающих, имеющих большие пробелы в знаниях, неустойчивое внимание. Наблюдение за повседневной учебной деятельностью наших воспитанников, анализ их устных и письменных ответов, их индивидуальные особенности, показали необходимость использования разнообразных методов и приемов подачи учебного материала, адаптации упражнений и задач, применение определенных схем, алгоритмов для анализа устных и письменных работ учащихся. Для повышения познавательной активности на уроке, для удержания внимания и интереса, для более качественного усвоения материала, для повторения и закрепления знаний и умений необходимо продумывать систему упражнений и задач. Вот некоторые из них.

Упражнения делим на группы. Например, упражнения на выделение свойств понятий.

  1. Найдите общие свойства прямоугольника и ромба.
  2. Из перечисленных свойств, выберите те, которые справедливы только для параллелограмма (прямоугольника, квадрата и т.д.)
  3. Что общего между квадратом и кругом?
  4. В каждом из приведенных ниже математических утверждений выделите условие и заключение:
    1. Сумма двух четных чисел – четное число.
    2. Квадрат нечетного числа не делится на 4.
    3. Произведение любых трех последовательных натуральных чисел делится на 6 и т.д.

Упражнения на усложнение содержания. Например:

  1. Дайте несколько определений уравнения, ромба, отрезка и т.д.
  2. Из списков родовых и видовых отличий записать определения различных четырехугольников.
  3. Для каждого из приведенных ниже предложений сформулируйте обратное и установите, будет оно верным или нет:
    1. Если число оканчивается нулем, то оно делится на 5.
    2. Если с-целое число, то 6с также целое число.
    3. Если число делится на 10, то оно делится на 5 и т.д.

Упражнения на обобщение материала по теме. Например, решая уравнение, ученик пошагово комментирует и объясняет свои действия, при этом отвечая на сопутствующие вопросы учителя и других учащихся по данной теме.

В процессе обучения учащемуся приходится много запоминать. Разумеется, запоминание затрудняется, если материал понят плохо. Непроизвольно запоминается то, что интересует учащегося, действует на его чувства, с чем он активно оперирует, что часто использует. Иногда оказывается полезным использование специальных приемов, облегчающих запоминание учебного материала. Такие приемы называют мнемоническими. Они применяются с привлечением мнемонических схем, фраз, опорных сигналов и т. п. например, одна из мнемонических фраз, придуманных для запоминания первых шести цифр, используемых в записи числа П, равного 3,14159… звучит так: “Это я знаю и помню прекрасно”. Подсчитывая количество букв каждого слова фразы, можно воспроизвести запись числа.

Дети и подростки с девиантным поведением имеют неустойчивое внимание. Для активизации познавательного интереса учащихся на уроке необходима частая смена деятельности. Проблемой результативности каждого этапа урока занимается каждый учитель. Познавательный интерес на уроке помогают активизировать различные творческие задания, элементы историзма, стихотворные формы заданий, задания с использованием сведением из других предметов, проведение различных математических эстафет, соревнований и т. д. Такие игровые элементы можно проводить на разных этапах урока: при опросе, устном счете, объяснении нового материала, закреплении. Схема их проста, правила быстро усваиваются и не отвлекают ребят от изучаемого материала. В качестве примера можно привести “веселые” вопросы:

  1. Когда нельзя сокращать сократимую обыкновенную дробь?
  2. Как можно истолковать равенства: а) 19+23=18; б) 9+8=5; в) 12+12=0; г) 7х3=9?
  3. Половина – треть числа. Какое это число?
  4. Половина от половины числа равна половине. Какое это число?
  5. Как с помощью одного знака неравенства можно записать, что число k больше -2, но меньше 2? И так далее.

Развитие внимания, активизация познавательного интереса детей и подростков девиантного поведения, их практическая деятельность на уроке, развитие творческого подхода к своей работе – одни из главных задач, которые учитель ставит на уроке. Для наших воспитанников нельзя строить подачу учебного материала только на готовых утверждениях. Восприятие и усвоение нового начинается, если вызван интерес, если продуман и подготовлен каждый этап урока. Тогда обеспечены определенный успех и эффективность занятия.