Цели урока:
Обучающая:
- формирование понятия дробных рационального уравнения;
- рассмотреть различные способы решения дробных рациональных уравнений;
- рассмотреть алгоритм решения дробных рациональных уравнений, включающий условие равенства дроби нулю;
- обучить решению дробных рациональных уравнений по алгоритму;
- проверка уровня усвоения темы путем проведения тестовой работы.
Развивающая:
- развитие умения правильно оперировать полученными знаниями, логически мыслить;
- развитие интеллектуальных умений и мыслительных операций - анализ, синтез, сравнение и обобщение;
- развитие инициативы, умения принимать решения, не останавливаться на достигнутом;
- развитие критического мышления;
- развитие навыков исследовательской работы.
Воспитывающая:
- воспитание познавательного интереса к предмету;
- воспитание самостоятельности при решении учебных задач;
- воспитание воли и упорства для достижения конечных результатов.
Тип урока: урок – объяснение нового материала.
Ход урока
1. Организационный момент.
Здравствуйте, ребята! На доске написаны уравнения посмотрите на них внимательно. Все ли из этих уравнений вы сможете решить? Какие нет и почему?
Уравнения, в которых левая и правя часть, являются дробно-рациональными выражениями, называются дробные рациональные уравнения. Как вы думаете, что мы будем изучать сегодня на уроке? Сформулируйте тему урока. Итак, открываем тетради и записываем тему урока «Решение дробных рациональных уравнений».
2. Актуализация знаний. Фронтальный опрос, устная работа с классом.
А сейчас мы повторим основной теоретический материл, который понадобиться нам для изучения новой темы. Ответьте, пожалуйста, на следующие вопросы:
- Что такое уравнение? (Равенство с переменной или переменными.)
- Как называется уравнение №1? (Линейное.) Способ решения линейных уравнений. (Все с неизвестным перенести в левую часть уравнения, все числа - в правую. Привести подобные слагаемые. Найти неизвестный множитель).
- Как называется уравнение №3? (Квадратное.) Способы решения квадратных уравнений. (Выделение полного квадрата, по формулам, используя теорему Виета и ее следствия.)
- Что такое пропорция? (Равенство двух отношений.) Основное свойство пропорции. (Если пропорция верна, то произведение ее крайних членов равно произведению средних членов.)
- Какие свойства используются при решении уравнений? (1. Если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение, равносильное данному. 2. Если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному.)
- Когда дробь равна нулю? (Дробь равна нулю, когда числитель равен нулю, а знаменатель не равен нулю.)
3. Объяснение нового материала.
Решить в тетрадях и на доске уравнение №2.
Решение:
9х = 18∙5
9х = 90
х = 90:9
х = 10
Ответ: 10.
Какое дробно-рациональное уравнение можно попробовать решить, используя основное свойство пропорции? (№5).
Решение:
(х-2)(х-4) = (х+2)(х+3)
х2-4х-2х+8 = х2+3х+2х+6
х2-6х-х2-5х = 6-8
-11х = -2
х = -2:(-11)
Решить в тетрадях и на доске уравнение №4.
Решение:
3х-3+4х = 5х
7х-5х = 3
2х = 3
х = 3:2
х = 1,5
Ответ: 1,5.
Какое дробно-рациональное уравнение можно попробовать решить, умножая обе части уравнения на знаменатель? (№6).
Решение:
12 = х(7-х)
12 = 7х-х2
х2-7х+12 = 0
D=1›0, х1=3, х2=4.
Ответ: 3;4.
Теперь попытайтесь решить уравнение №7 одним из способов.
Решение:
1 способ: |
|
|
2 способ: |
(х2-2х-5)х(х-5)=х(х-5)(х+5) |
|
|
|
(х2-2х-5)х(х-5)-х(х-5)(х+5)=0 |
|
|
х2-2х-5=х+5 |
х(х-5)(х2-2х-5-(х+5))=0 |
|
|
х2-2х-5-х-5=0 |
х(х-5)(х2-3х-10)=0 |
|
|
х2-3х-10=0 |
х=0 х-5=0 х2-3х-10=0 |
|
|
D=49 |
х1=0 х2=5 D=49 |
|
|
|
х3=5 х4=-2 |
|
|
х3=5 х4=-2 |
Ответ: 0;5;-2. |
|
|
Ответ: 5;-2. |
Объясните, почему так получилось? Почему в одном случае три корня, в другом – два? Какие же числа являются корнями данного дробно-рационального уравнения?
До сих пор учащиеся с понятием посторонний корень не встречались, им действительно очень трудно понять, почему так получилось. Если в классе никто не может дать четкого объяснения этой ситуации, тогда учитель задает наводящие вопросы.
- Чем отличаются уравнения № 2 и 4 от уравнений № 5,6,7? (В уравнениях № 2 и 4 в знаменателе числа, № 5-7 – выражения с переменной.)
- Что такое корень уравнения? (Значение переменной, при котором уравнение обращается в верное равенство.)
- Как выяснить является ли число корнем уравнения? (Сделать проверку.)
При выполнении проверки некоторые ученики замечают, что приходится делить на нуль. Они делают вывод, что числа 0 и 5 не являются корнями данного уравнения. Возникает вопрос: существует ли способ решения дробных рациональных уравнений, позволяющий исключить данную ошибку? Да, это способ основан на условие равенства дроби нулю.
Решение:
х2-3х-10=0 , D=49 , х1=5 , х2=-2.
Если х=5, то х(х-5)=0, значит 5- посторонний корень.
Если х=-2, то х(х-5)≠0.
Ответ: -2.
Давайте попробуем сформулировать алгоритм решения дробных рациональных уравнений данным способом. Дети сами формулируют алгоритм.
Алгоритм решения дробных рациональных уравнений:
- Перенести все в левую часть.
- Привести дроби к общему знаменателю.
- Составить систему: дробь равна нулю, когда числитель равен нулю, а знаменатель не равен нулю.
- Решить уравнение.
- Проверить неравенство, чтобы исключить посторонние корни.
- Записать ответ.
Обсуждение: как оформить решение, если используется основное свойство пропорции и умножение обеих частей уравнения на общий знаменатель. (Дополнить решение: исключить из его корней те, которые обращают в нуль общий знаменатель).
4. Первичное осмысление нового материала.
Работа в парах. Учащиеся выбирают способ решения уравнения самостоятельно в зависимости от вида уравнения. Задания из учебника «Алгебра 8», Ю.Н. Макарычев,2007: № 600(б,в,и); № 601(а,д,ж). Учитель контролирует выполнение задания, отвечает на возникшие вопросы, оказывает помощь слабоуспевающим ученикам. Самопроверка: ответы записаны на доске.
№ 600
б) 2 – посторонний корень. Ответ:3.
в) 2 – посторонний корень. Ответ: 1,5.
№ 601
а) Ответ: -12,5.
ж) Ответ: 1;1,5.
5. Постановка домашнего задания.
- Прочитать п.25 из учебника, разобрать примеры 1-3.
- Выучить алгоритм решения дробных рациональных уравнений.
- Решить в тетрадях № 600(а,г,д); №601(г,з).
- Попробовать решить №696(а)(по желанию).
6. Выполнение контролирующего задания по изученной теме.
Работа выполняется на листочках.
Пример задания:
А) Какие из уравнений являются дробными рациональными?
Б) Дробь равна нулю, когда числитель ______________________ , а знаменатель _______________________ .
В) Является ли число -3 корнем уравнения №6?
Г) Решить уравнение №7.
Критерии оценивания задания:
- «5» ставится, если ученик выполнил правильно более 90% задания.
- «4» - 75%-89%
- «3» - 50%-74%
- «2» ставится учащемуся, выполнившему менее 50% задания.
- Оценка 2 в журнал не ставится, 3 - по желанию.
7. Рефлексия.
На листочках с самостоятельной работой поставьте:
- 1 – если на уроке вам было интересно и понятно;
- 2 – интересно, но не понятно;
- 3 – не интересно, но понятно;
- 4 – не интересно, не понятно.
8. Подведение итогов урока.
Итак, сегодня на уроке мы с вами познакомились с дробными рациональными уравнениями, научились решать эти уравнения различными способами, проверили свои знания с помощью обучающей самостоятельной работы. Результаты самостоятельной работы вы узнаете на следующем уроке, дома у вас будет возможность закрепить полученные знания.
Какой метод решения дробных рациональных уравнений, по Вашему мнению, является более легким, доступным, рациональным? Не зависимо от метода решения дробных рациональных уравнений, о чем необходимо не забывать? В чем «коварство» дробных рациональных уравнений?
Всем спасибо, урок окончен.