Программа курса "Наглядная геометрия" для 5–6-х классов

Разделы: Математика

Классы: 5, 6

Ключевые слова: рабочая программа, наглядная геометрия, топологические опыты, фигуры в пространстве


Я думаю, что никогда до настоящего времени мы не жили в такой геометрический период. Все вокруг – геометрия.

Французский архитектор Ле Корбюзье, начало ХХ века.

Рабочая программа предназначена для работы в 5-6-х классах общеобразовательной школы.

Основой данной рабочей программы по наглядной геометрии для 5-6-х классов является авторская программа Т.Г.Ходот и А.Ю.Ходот (С.-Петербург).

Геометрия дает учителю уникальную возможность развивать ребенка на любой стадии формирования его интеллекта. Три ее основные составляющие: фигуры, логика и практическая применимость позволяют гармонично развивать образное и логическое мышление ребенка любого возраста, воспитывать у него навыки познавательной, творческой и практической деятельности.

Однако именно сочетание упомянутых составляющих становится для многих детей непреодолимым препятствием успешному освоению предмета. Так, ученики VII класса должны одновременно и знакомиться с новыми фигурами, усваивая их основные свойства, накапливая и связывая между собой геометрические представления, и овладевать геометрической терминологией, приобретать навыки доказательства утверждений, сталкиваясь с необходимостью не только говорить, но и думать на новом для себя научном языке. По нашему убеждению и по опыту многих учителей, разумное разделение этих трудностей способствует успешному усвоению школьниками геометрии. Одним из способов такого разделения является двукратное изучение курса геометрии.

Первая ступень изучения — интуитивная — основана на системе общих представлений о фигурах (свойствах, классах, действиях и т.д.). Иначе эту ступень можно рассматривать как визуальную (наглядную), а систему представлений - как набор образов, готовых к актуализации в повседневной жизни, творчестве, познавательной деятельности, в частности в дальнейших более серьезных занятиях геометрией. Это — ядро, сердцевина геометрического образования, формируемое вне зависимости от программы, учителя, отношения ученика к предмету.

Основы системы геометрических представлений заложены в человеке самой природой и развиваются, начиная с первых дней его жизни. Школьная геометрия может и должна укрепить это ядро, заполнив пустоты в системе представлений, сделав ее универсально функциональной, непротиворечивой, пополняемой в процессе продолжения образования. В школе это ядро наращивается за счет остаточных знаний при изучении предмета, а в дальнейшем - за счет бытовых и профессиональных навыков и опыта, являясь существенным элементом общей образованности и культуры.

Вторая ступень — логическая, опирающаяся на первую, построена на системе абстрактных терминов, понятий, высказываний не только об объектах (фигурах), но и о логических операциях, задачах и методах их решения, научных теориях. Эту ступень геометрического образования удается преодолеть далеко не всем учащимся (особенно без предварительного уверенного “взятия” первой ступени), и зачастую не столько из-за отсутствия у них математических способностей, сколько из-за отсутствия мотивации в ее преодолении.

Сегодня в школе геометрия обрушивается на учащегося лавиной совершенно чуждых его “гуманитаризированному” сознанию терминов и логических конструкций, вызывая мотивационный вакуум. Интуитивная геометрическая база среднего ученика настолько скудна и бессвязна, а методические возможности среднего учителя по ее актуализации и формированию настолько несовершенны, что в целом можно говорить о “геометрическом коллапсе”, наблюдающемся в российской школе. В итоге после ее окончания уровень общих геометрических представлений ученика почти не меняется по сравнению с дошкольным, а пополняется лишь обрывками знаний, относимых нами ко второй ступени.

Выделение особого “интуитивного” пропедевтического курса геометрии, нацеленного на укрепление и совершенствование системы геометрических представлений, решает основные проблемы. С одной стороны, это способствует предварительной адаптации учащихся к регулярному курсу геометрии, с другой — может обеспечить достаточный уровень геометрических знаний в гуманитарном секторе школьного образования, давая возможность в дальнейшем высвободить часы для углубленного изучения других предметов без нанесения ущерба развитию ребенка.

Цели курса “Наглядная геометрия”

Через систему задач организовать интеллектуально-практическую и исследовательскую деятельность учащихся, направленную на:

  • развитие пространственных представлений, образного мышления, изобразительно графических умений, приемов конструктивной деятельности, умений преодолевать трудности при решении математических задач, геометрической интуиции, познавательного интереса учащихся, развитие глазомера, памяти обучение правильной геометрической речи;
  • формирование логического и абстрактного мышления, формирование качеств личности (ответственность, добросовестность, дисциплинированность, аккуратность, усидчивость).

Задачи курса “Наглядная геометрия”

Вооружить учащихся определенным объемом геометрических знаний и умений, необходимых им для нормального восприятия окружающей деятельности. Познакомить учащихся с геометрическими фигурами и понятиями на уровне представлений, изучение свойств на уровне практических исследований, применение полученных знаний при решении различных задач. Основными приемами решения задач являются: наблюдение, конструирование, эксперимент.

Развитие логического мышления учащихся строения курса, которое, в основном, соответствует логике систематического курса, а во-вторых, при решении соответствующих задач, как правило, “в картинках”.

На занятиях наглядной геометрии предусмотрено решение интересных головоломок, занимательных задач, бумажных геометрических игр и т.п. Этот курс поможет развить у ребят смекалку и находчивость при решении задач.

Приобретение новых знаний учащимися осуществляется в основном в ходе их самостоятельной деятельности. Среди задачного и теоретического материала акцент делается на упражнения, развивающие “геометрическую зоркость”, интуицию и воображение учащихся. Уровень сложности задач таков, чтобы их решения были доступны большинству учащихся.

В результате изучения курса учащиеся должны:

  • ЗНАТЬ: простейшие геометрические фигуры (прямая, отрезок, луч, многоугольник, квадрат, треугольник, угол), пять правильных многогранников, свойства геометрических фигур.
  • УМЕТЬ: строить простейшие геометрические фигуры, складывать из бумаги простейшие фигурки – оригами, измерять длины отрезков, находить площади многоугольников, находить объемы многогранников, строить развертку куба.

Место предмета в федеральном базисном учебном плане

Курс реализуется за счет школьного компонента учебного плана. Данная программа рассчитана на 64 часа по 1 часу в неделю в каждом классе.

Учебно-тематический план

5-й класс

Тема

Кол-во часов

 

Введение

5

 

Фигуры на плоскости

10

 

Топологические опыты

4

 

Фигуры в пространстве

8

 

Измерение геометрических величин

5

Итого

32

Подробное тематическое планирование курса “Наглядная геометрия” для 5 класса в разделе Приложение 1.

6-й класс

Тема

Кол-во часов

 

Взаимное расположение прямых на плоскости. Симметрия

9

 

Многогранники

9

 

Точки на координатной плоскости

5

 

Замечательные кривые

9

Итого

32

Подробное тематическое планирование курса “Наглядная геометрия” для 6 класса в разделе Приложение 2.

Содержание тем учебного курса

5-й класс

Введение

Основная цель: познакомить учащихся с новым предметом – геометрия, обобщить и систематизировать знания учащихся о простейших геометрических фигурах, которые рассматривались в начальной школе.

Первые шаги в геометрии. Измерительные и чертежные инструменты. Пространство и размерность. Параллелепипед. Трехмерное пространство. Двухмерное пространство. Одномерное пространство. Простейшие геометрические фигуры: прямая, луч, отрезок, многоугольник. Углы, их построение и измерение. Вертикальные углы. Биссектриса угла. Треугольник, Виды треугольников. Построение треугольников. Пирамида. Квадрат.

Фигуры на плоскости

Основная цель: познакомить ребят с заданиями и объяснениями, которые опираются на конструирование из палочек, бумаги, картона и пр.

Задачи со спичками. Задачи на разрезание и складывание фигур: “сложи квадрат”, “согни и отрежь”, “рамки и вкладыши Монтессори”, “край в край”. Танграм. Пентамино. Гексамино. Конструирование из Т. Геометрия клетчатой бумаги – игры, головоломки. Паркеты, бордюры.

Топологические опыты

Основная цель: познакомить с понятием топология, провести некоторые опыты, связанные с топологией.

Фигуры одним росчерком пера. Листы Мебиуса. Граф.

Фигуры в пространстве

Основная цель: познакомить с понятием многогранник, сформировать динамические представления через использование серий картинок для изображения действий, процессов, преобразований, классов фигур.

Многогранники, их элементы. Куб, его свойство. Элементы куба. Фигурки из кубиков и их частей. Движение кубиков. Уникуб. Игры и головоломки с кубом, параллелепипедом. Оригами.

Измерение геометрических величин

Основная цель: сформировать у учащихся представления об общих идеях теории измерений.

Измерение длин, вычисление площадей и объемов. Развертки куба, параллелепипеда. Площадь поверхности. Объем куба, параллелепипеда

6-й класс

Симметрия. Взаимное расположение прямых на плоскости. (9 часов)

Основная цель: познакомить учащихся с понятием симметрия, с видами симметрии, рассмотреть взаимное расположение прямых на плоскости.

Симметричные фигуры. Симметрия помогает решать задачи. Зеркальное отражение. Параллельность и перпендикулярность. Параллелограммы.

Многогранники (9 часов)

Основная цель: рассмотреть правильные многогранники, показать развертки правильных многогранников

Правильные многогранники. Фигурки из кубиков и их частей. Геометрический тренинг. Окружность. Одно важное свойство окружности.

Точки на координатной плоскости (5 часа)

Основная цель: познакомить с понятием координатной плоскости, рассмотреть игры связанные с координатами.

Координаты… Координаты… Координаты… Зашифрованная переписка. Лабиринты.

Замечательные кривые (9 часов)

Основная цель: познакомить поистине с замечательными кривыми, населяющими мир геометрии.

Замечательные кривые. Кривые Дракона. Задачи, головоломки, игры. Геометрические головоломки.

Литература

  1. Шарыгин И.Ф., Ерганжиева Л.Н. Наглядная геометрия. Учебное пособие для 5 – 6 класс. М.: Дрофа, 2000 г.
  2. Смирнова Е.С. Геометрическая линия в учебниках математики для 5 – 6 классов Г.В. Дорофеева и Л.Г. Петерсона. Методическое пособие для учителей. М.: УМЦ “Школа 2000…”, 2004 г.
  3. Учебник Математика 5. И.И. Зубарева. А.Г.Мордкович. М.:Мнемозина, 2004.
  4. Учебник Математика 6. И.И. Зубарева. А.Г.Мордкович. М.:Мнемозина, 2004.
  5. Занятия математического кружка в 5 классе. В.А.Руденко, Г.А.Бахурин, Г.А. Захарова. М.: Искатель, 1996.
  6. Крутецкий В.А. Психология математических способностей школьников. М.: Просвещение, 1968 г.
  7. Ходот Т.Г. Наглядная геометрия 5-6 классы. М.: Издательство ООО “Школьная пресса”. Журнал “Математика в школе”, №7, 2006.
  8. Рослова Л.О. Методика преподавания наглядной геометрии учащихся 5-6 классов. М.: Издательский дом “Первое сентября”. Еженедельная газета “Математика”, №19-24, 2009.