Решение систем линейных уравнений с параметрами

Разделы: Математика


Цель:

  • повторить решение систем линейных уравнений с двумя переменными
  • дать определение системы линейных уравнений с параметрами
  • научит решать системы линейных уравнений с параметрами.

Ход урока

  1. Организационный момент
  2. Повторение
  3. Объяснение новой темы
  4. Закрепление
  5. Итог урока
  6. Домашнее задание

2. Повторение:

I. Линейное уравнение с одной переменной:

1. Дайте определение линейного уравнения с одной переменной

[Уравнение вида ax=b, где х – переменная, а и b некоторые числа, называется линейным уравнением с одной переменной]

2. Сколько корней может иметь линейное уравнение?

[- Если а=0, b0, то уравнение не имеет решений, х

- Если а=0, b=0, то х R

- Если а0, то уравнение имеет единственное решение, х =

3. Выясните, сколько корней имеет уравнение (по вариантам)

I ряд – I вариант

7х-(х+3)=3(2х-1)

Решение:

7х-х-3=6х-3

6х-6х=-3+3

0*х=0

х – любое

Ответ: много корней

II ряд – II вариант

6х-(2х-5)=2(2х+4)

Решение:

6х-2х+5=4х+8

4х-4х=8-5

0*х=3

корней нет

Ответ: корней нет

III ряд – III вариант

8х-(х+4)=2(3х-2)

Решение:

8х-х-4=6х-4

7х-6х=-4+4

х=0

 

Ответ: единственный корень

II. Линейное уравнение с 2 –мя переменными и система линейных уравнений с 2- мя переменными.

1. Дайте определение линейного уравнения с двумя переменными. Приведите пример.

[Линейным уравнением с двумя переменными называются уравнения вида ах +by=с, где х и у – переменные, а, b и с – некоторые числа. Например, х-у=5]

2. Что называется решением уравнения с двумя переменными?

[Решением уравнения с двумя переменными называются пара значений переменных, обращающие это уравнение в верное равенство.]

3. Является ли пара значений переменных х = 7, у = 3 решением уравнения 2х + у = 17?

[2*7+3=17]

4. Что называется графиком уравнения с двумя переменными?

[Графиком уравнения с двумя переменными называется множество всех точек координатной плоскости, координаты которых является решениями этого уравнения.]

5. Выясните, что представляет собой график уравнения:

3х + 2у = 6

[Выразим переменную у через х: у=-1,5х+3

Формулой у=-1,5х+3 является линейная функция, графиком которой служит прямая. Так как, уравнения 3х+2у=6 и у=-1,5х+3 равносильны, то эта прямая является и графиком уравнения 3х+2у=6]

6. Что является графиком уравнения ах+bу=с с переменными х и у, где а0 или b0?

[Графиком линейного уравнения с двумя переменными, в котором хотя бы один из коэффициентов при переменных не равен нулю, является прямая.]

7. Что называется решением системы уравнений с двумя переменными?

[Решением системы уравнений с двумя переменными называется пара значений переменных, обращающая каждое уравнение системы в верное равенство]

8. Что значит решить систему уравнений?

[Решить систему уравнений – значит найти все ее решения или доказать, что решений нет.]

9. Выясните, всегда ли имеет такая система решения и если имеет, то сколько (графическим способом).

Приложение 1

10. Сколько решений может иметь система двух линейных уравнений с двумя переменными?

[Единственное решение, если прямые пересекаются; не имеет решений, если прямые параллельны; бесконечно много, если прямые совпадают]

11. Каким уравнением обычно задается прямая?

[y=kx+b]

12. Установите связь между угловыми коэффициентами и свободными членами:

I вариант:
  • у=-х+2
  • y= -x-3,

k1 = k2, b1 b2, нет решений;

II вариант:
  • y=-х+8
  • y=2x-1,

k1 k2, одно решение;

III вариант:
  • y=-x-1
  • y=-x-1,

k1 = k2, b1 = b2, много решений.

Вывод:

  1. Если угловые коэффициенты прямых являющихся графиками этих функций различны, то эти прямые пересекаются и система имеет единственное решение.
  2. Если угловые коэффициенты прямых одинаковы, а точки пересечения с осью у различны, то прямые параллельны, а система не имеет решений.
  3. Если угловые коэффициенты и точки пересечения с осью у одинаковы, то прямые совпадают и система имеет бесконечно много решений.

На доске таблица, которую постепенно заполняет учитель вместе с учениками.

Приложение 2

III. Объяснение новой темы.

Определение: Система вида

  • A1x+B1y=C
  • A2x+B2y=C2

где A1, A2, B1,B2, C1 C2 – выражения, зависящие от параметров, а х и у – неизвестные, называется системой двух линейных алгебраических уравнений с двумя неизвестными в параметрах.

Возможны следующие случаи:

1) Если , то система имеет единственное решение

2) Если , то система не имеет решений

3) Если , то система имеет бесконечно много решений.

IV. Закрепление

Пример 1.

При каких значениях параметра а система

  • 2х - 3у = 7
  • ах - 6у = 14

а) имеет бесконечное множество решений;

б) имеет единственное решение

Решение:

а) , а=4

б) , а?4

Ответ:

а) если а=4, то система имеет бесконечное множество решений;

б) если а4, то решение единственное.

Пример 2.

Решите систему уравнений

  • x+(m+1)y=1
  • x+2y=n

Решение: а) , т.е. при m1 система имеет единственное решение.

б) , т.е. при m=1 (2=m+1) и n1 исходная система решений не имеет

в) , при m=1 и n=1 система имеет бесконечно много решений.

Ответ: а) если m=1 и n1, то решений нет

б) m=1 и n=1, то решение бесконечное множество

  • у - любое
  • x=n-2y

в) если m1 и n - любое, то

y= x=

Пример 3.

Для всех значений параметра а решить систему уравнений

  • ах-3ау=2а+3
  • х+ау=1

Решение: Из II уравнения найдем х=1-ау и подставим в I уравнение

а(1-ау)-3ау=2а+3

а-а2у-3ау=2а+3

2у-3ау=а+3

-а(а+3)у=а+3

Возможны случаи:

1) а=0. Тогда уравнение имеет вид 0*у=3 [у ]

Следовательно, при а=0 система не имеет решений

2) а=-3. Тогда 0*у=0.

Следовательно, у . При этом х=1-ау=1+3у

3) а0 и а-3. Тогда у=-, х=1-а(-=1+1=2

Ответ:

1) если а=0, то (х; у)

2) если а=-3, то х=1+3у, у

3) если а0 и а?-3, то х=2, у=-

Рассмотрим II способ решения системы (1).

Решим систему (1) методом алгебраического сложения: вначале умножим первое уравнение системы на В2, второе на – В1 и сложим почленно эти уравнения, исключив, таким образом, переменную у:

Т.к. А1В22В10, то х =

Теперь исключим переменную х. Для этого умножим первое уравнение системы (1) на А2, а второе на – А1, и оба уравнения сложим почленно:

  • А1А2х +А2В1у=А2С1
  • 1А2х-А1В2у=-А1С2
  • у(А2В11В2)=А2С11С2

т.к. А2В11В2 0 у =

Для удобства решения системы (1) введем обозначения:

- главный определитель

Теперь решение системы (1) можно записать с помощью определителей:

х= ; у=

Приведенные формулы называют формулами Крамера.

- Если , то система (1) имеет единственное решение: х=; у=

- Если , или , , то система (1) не имеет решений

- Если , , , , то система (1) имеет бесконечное множество решений.

В этом случае систему надо исследовать дополнительно. При этом, как правило, она сводится к одному линейному уравнению. В случае часто бывает удобно исследовать систему следующим образом: решая уравнение , найдем конкретные значения параметров или выразим один из параметров через остальные и подставим эти значения параметров в систему. Тогда получим систему с конкретными числовыми коэффициентами или с меньшим числом параметров, которую надо и исследовать.

Если коэффициенты А1, А2, В1, В2, системы зависят от нескольких параметров, то исследовать систему удобно с помощью определителей системы.

Пример 4.

Для всех значений параметра а решить систему уравнений

  • (а+5)х+(2а+3)у=3а+2
  • (3а+10)х+(5а+6)у=2а+4

Решение: Найдем определитель системы:

= (а+5)(5а+6) – (3а+10) (2а+3)= 5а2+31а+30-6а2-29а-30=-а2+2а=а(2-а)

= (3а+2) (5а+6) –(2а+4)(2а+3)=15а2+28а+12-4а2-14а-12=11а2+14а=а(11а+14)

=(а+5) (2а+4)-(3а+10)(3а+2)=2а2+14а+20-9а2-36а-20=-7а2-22а=-а(7а+22)

1) Тогда

х= у=

2) или а=2

При а=0 определители

Тогда система имеет вид:

  • 5х+3у=2    5х+3у=2
  • 10х+6у=4

При а=2 Этого достаточно, чтобы утверждать, что система не имеет решений.

Ответ:

1) если а и а, то х= у=

2) если а=0, то х,

3) если а=2, то (х; у)

Пример 5.

Для всех значений параметров а и b решить систему уравнений

(а+1)х+2у=b

bx+y=3

Решение: = =а+1-2b

= = b -6; = 3a+3-b

1) . Тогда

х= у=

2)

Подставив выражение параметра а в систему, получим:

  • 2bx+2y=b            2bx+2y=b
  • bx+y=3   2bx+2y=6

Если b6, то система не имеет решений, т.к. в этом случае I и II уравнения системы противоречат друг другу.

Если b=6, а=2b-1=2*6-1=11, то система равносильна одному уравнению

12х+2у=6 у=3-6х

Ответ:

1) если , (а), то x=, y=

2) если b, a, то система не имеет решений

3) если b=6, а=11, то х, у=3-6х

Самостоятельная работа.

Приложение 3

Итог урока: Повторить по таблице и поставить оценки.

Задание на дом:

При каких значениях параметра система уравнений

  • 3х-2у=5
  • 6х-4у=b

а) имеет бесконечное множество решений

б) не имеет решений

Ответ:

а) b=10

б) b10