Алгебра и начала анализа. 10 – 11-й классы . Тема урока: "Логарифмическая функция в уравнениях"

Разделы: Математика

Класс: 11


Цели урока:

1)образовательные:

– обобщить и закрепить понятие логарифма числа;
– повторить основные свойства логарифмов, свойства логарифмической функции;
– закрепить умения применять эти понятия при решении уравнений;

2) воспитательные:

-воспитание познавательной активности, культуры общения, культуры диалога;

3) развивающие:

– развитие зрительной памяти;
– развитие математически грамотной речи, логического мышления, сознательного восприятия учебного материала.

Оборудование урока: кодоскоп, слайды, мультимедийный проектор, доска, мел, карточки для самостоятельной работы.

Ход урока

Вступительное слово учителя.

Я приветствую Вас на сегодняшнем уроке алгебры. Тема урока: “Логарифмическая функция в уравнениях”. Сегодня мы повторим понятие логарифма числа, свойства логарифма, логарифмической функции, закрепим умения применять эти понятия при решении уравнений. Откроем дневники запишем домашнее задание.

Д/з п.37-39, № 520в, №518б, №523г.

А начнем урок с умственной разминки. Я этот этап назвала “Потяни за ниточку”.

1. Дайте определение логарифма числа?

Логарифмом числа в по основанию а называется показатель степени, в которую нужно возвести основание а, чтобы получить число в.

2. Как читается основное логарифмическое тождество?

, а

3. Основные свойства логарифмов?

1.

2.

3.

4.

5.

4. Какие логарифмы называются десятичными?

Логарифмы по основанию 10 .

Выполним задания на применение определения логарифма числа.

1. 2.
3. 4.
5. 6.
7. 8.

Ответ:1)2; 2)0; 3) -4; 4)4; 5)-3; 6)-3; 7)9; 8)36.

Следующий этап разминки “ Видит око, да ум ещё дальше”. Выполним задания на применение свойств логарифмов:

1. 2.
3. 4.

Ответ: 1)1; 2)1; 3)2; 4)-3.

Предлагаю вашему вниманию “Логарифмическую комедию “2>3”.

Рассмотрение начинается с безусловно правильного неравенства: . Затем следует преобразование: , которое также не внушает сомнения. Большему числу соответствует больший логарифм, значит После сокращения на , имеем 2>3. В чем состоит ошибка этого доказательства?

Ответ: Ошибка была допущена при сокращении на ; т.к. <0, то при сокращении на необходимо было изменить знак неравенства, т.е. 2<3.

Следующий этап урока называется “На приз Непера”.

Немного об изобретателе логарифмов и создателе логарифмических таблиц. Джон Непер- шотландец. В 16 лет отправился на континент, где в течение 5 лет учился в различных универси-тетах Европы, изучал математику. Затем серьезно занимался астрономией и математикой. К идее логарифмических вычислений непер пришел ещё в 80-х годах 16 века, однако опубликовал свои таблицы только в 1614г., после 25-летних вычислений. Они вышли под названием “Описание чудесных логарифмических таблиц”. Неперу принадлежит и сам термин “логарифм”, который он переводит как “искусственное число”. Таблицы и идеи Непера быстро нашли распространение. “Правило Непера” и “аналогии Непера” можно встретить в так называемой сферической тригонометрии.

Сейчас проведем графический диктант “Логарифмическая функция”. Я буду читать вопросы, вы, отвечая в тетради на вопрос в строчку изобразите ответ, где “Да” изобразите отрезком , а “нет” уголком . В результате ответов на вопросы у вас получится “график”.

Вопросы – задания (читает учитель).

1. Логарифмическая функция определена при любом х (нет)

2. Функция логарифмическая при (да)

3. Областью определения логарифмической функции является множество действительных чисел (нет)

4. Областью значений логарифмической функции является (да)

5. Функция – возрастающая (да)

6. График функции пересекается с осью Ох (да)

7. Существует логарифм отрицательного числа (нет)

В результате выполнения диктанта в тетрадях станет такая запись.

Ответ:  

Продолжаем урок. И следующий этап урока “ Доберись до вершины”.

Применим свойства логарифма к решению логарифмических уравнений. Разберем решение логарифмического уравнения методом введения переменной.

Решим № 520 г.

1) г) ОДЗ: х>0

Пусть

Д=4+12=16

х=27

Ответ: .

2) №518г.

ОДЗ:

или (не входит в ОДЗ)

Ответ: 0

3) №523в.

ОДЗ:

Ответ: 9

А этот этап урока называется “Для везунчиков!”

Ребята! Вам очень повезло. В этом году вы участвуете в ЕГЭ. Я предлагаю вам выполнить самостоятельную работу. У вас на столе лежат варианты самостоятельных работ.(Приложение №1)

Подведение итогов (рефлексия).

Продолжите фразу:

“Сегодня на уроке я узнал…”
“Сегодня на уроке я научился…”
“Сегодня на уроке я познакомился…”
“Сегодня на уроке я повторил…”
“Сегодня на уроке я закрепил…”

Оценки:

Приложения