Теорема Остроградского—Гаусса

Разделы: Физика

Класс: 10

Ключевые слова: теория


Цель урока: Теорема Остроградского–Гаусса была установлена русским математиком и механиком Михаилом Васильевичем Остроградским в виде некоторой общей математической теоремы и немецким математиком Карлом Фридрихом Гауссом. Данная теорема может быть использована при изучении физики на профильном уровне, так как позволяет более рационально производить расчёты электрических полей.

Вектор электрической индукции

Для вывода теоремы Остроградского–Гаусса необходимо ввести такие важные вспомогательные понятия, как вектор электрической индукции и поток этого вектора Ф.

Известно, что электростатическое поле часто изображают при помощи силовых линий. Предположим, что мы определяем напряжённость в точке, лежащей на границе раздела двух сред: воздуха(=1) и воды (=81). В этой точке при переходе из воздуха в воду напряжённость электрического поля согласно формуле уменьшится в 81 раз. Если пренебречь проводимостью воды, то во столько же раз уменьшится число силовых линий. При решении различных задач на расчёт полей из-за прерывности вектора напряжённости на границе раздела сред и на диэлектриках создаются определённые неудобства. Чтобы избежать их, вводится новый вектор , который называется вектором электрической индукции:

Вектор электрической индукции равен произведению вектора на электрическую постоянную и на диэлектрическую проницаемость среды в данной точке.

Очевидно, что при переходе через границу двух диэлектриков число линий электрической индукции не изменяется для поля точечного заряда (1).

В системе СИ вектор электрической индукции измеряется в кулонах на квадратный метр (Кл/м2). Выражение (1) показывает, что численное значение вектора не зависит от свойств среды. Поле вектора графически изображается аналогично полю напряжённости (например, для точечного заряда см. рис.1). Для поля вектора имеет место принцип суперпозиции:

Поток электрической индукции

Вектор электрической индукции характеризует электрическое поле в каждой точке пространства. Можно ввести ещё одну величину, зависящую от значений вектора не в одной точке, а во всех точках поверхности, ограниченной плоским замкнутым контуром.

Для этого рассмотрим плоский замкнутый проводник (контур) с площадью поверхности S, помещённый в однородное электрическое поле. Нормаль к плоскости проводника составляет угол с направлением вектора электрической индукции (рис. 2).

Потоком электрической индукции через поверхность S называют величину, равную произведению модуля вектора индукции на площадь S и на косинус угла между вектором и нормалью :

Вывод теоремы Остроградского–Гаусса

Эта теорема позволяет найти поток вектора электрической индукции через замкнутую поверхность, внутри которой находятся электрические заряды.

Пусть вначале один точечный заряд q помещён в центр сферы произвольного радиуса r1 (рис. 3). Тогда ; . Вычислим полный поток индукции проходящий через всю поверхность этой сферы: ; (). Если возьмём сферу радиуса , то также Ф = q. Если проведём сферу , не охватывающую заряд q, то полный поток Ф = 0 (так как каждая линия войдёт в поверхность, а другой раз выйдет из неё).

Таким образом, Ф = q, если заряд расположен внутри замкнутой поверхности и Ф = 0, если заряд расположен вне замкнутой поверхности. Поток Ф от формы поверхности не зависит. Он также не зависит от расположения зарядов внутри поверхности. Это значит, что полученный результат справедлив не только для одного заряда, но и для какого угодно числа произвольно расположенных зарядов, если только подразумевать под q алгебраическую сумму всех зарядов, находящихся внутри поверхности.

Теорема Гаусса: поток электрической индукции через любую замкнутую поверхность равен алгебраической сумме всех зарядов, находящихся внутри поверхности: .

Из формулы видно, что размерность электрического потока такая же, как и электрического заряда. Поэтому единицей потока электрической индукции служит кулон (Кл).

Примечание: если поле неоднородно и поверхность, через которую определяют поток, не является плоскостью, то эту поверхность можно разбить на бесконечно малые элементы ds и каждый элемент считать плоским, а поле возле него однородным. Поэтому для любого электрического поля поток вектора электрической индукции через элемент поверхности есть: =. В результате интегрирования полный поток через замкнутую поверхность S в любом неоднородном электрическом поле равен: , где q – алгебраическая сумма всех зарядов, окружённых замкнутой поверхностью S. Выразим последнее уравнение через напряжённость электрического поля (для вакуума): .

Это одно из фундаментальных уравнений Максвелла для электромагнитного поля, записанное в интегральной форме. Оно показывает, что источником постоянного во времени электрического поля являются неподвижные электрические заряды.

Применение теоремы Гаусса

Поле непрерывно распределённых зарядов

Определим теперь с помощью теоремы Остроградского-Гаусса напряжённость поля для ряда случаев.

1. Электрическое поле равномерно заряженной сферической поверхности.

Сфера радиусом R. Пусть заряд +q равномерно распределён по сферической поверхности радиуса R. Распределение заряда по поверхности характеризуется поверхностной плотностью заряда (рис.4). Поверхностной плотностью заряда называют отношение заряда к площади поверхности, по которой он распределён. . В СИ .

Определим напряжённость поля:

а) вне сферической поверхности,
б) внутри сферической поверхности.

а) Возьмём точку А, отстоящую от центра заряженной сферической поверхности на расстоянии r>R. Проведём через неё мысленно сферическую поверхность S радиуса r, имеющую общий центр с заряженной сферической поверхностью. Из соображения симметрии очевидно, что силовые линии являются радиальными прямыми перпендикулярными к поверхности S и равномерно пронизывают эту поверхность, т.е. напряжённость по всех точках этой поверхности постоянна по величине. Применим теорему Остроградского-Гаусса к этой сферической поверхности S радиуса r. Поэтому полный поток через сферу равен N = E? S; N=E. С другой стороны . Приравниваем: . Отсюда: при r>R.

Таким образом: напряжённость, создаваемая равномерно заряженной сферической поверхностью, вне её такая же, как если бы весь заряд находился в её центре (рис.5).

б) Найдём напряжённость поля в точках, лежащих внутри заряженной сферической поверхности. Возьмём точку В отстоящую от центра сферы на расстоянии <R, и проведём через эту точку сферическую поверхность имеющую общий центр с заряженной сферической поверхностью. Из соображения симметрии ясно, что напряжённость должна быть численно одинакова на всей выбранной поверхности сферы S и нормальна к ней. Применяя теорему Остроградского-Гаусса к сферической поверхности S на основании формулы: N=E? S, S=4p т.к. заряд внутри сферы S q = 0, то. Тогда , E = 0 при r<R. Следовательно, напряжённость электрического поля во всех точках внутри равномерно заряженной сферической поверхности равна нулю.

2. Напряжённость поля равномерно заряженной бесконечной плоскости

Рассмотрим электрическое поле создаваемое бесконечной плоскостью, заряженной с плотностью , постоянной во всех точках плоскости. По соображениям симметрии можно считать, что линии напряжённости перпендикулярны к плоскости и направлены от неё в обе стороны (рис.6).

Выберем точку А, лежащую справа от плоскости и вычислим в этой точке, применяя теорему Остроградского-Гаусса. В качестве замкнутой поверхности выберем цилиндрическую поверхность таким образом, чтобы боковая поверхность цилиндра была параллельна силовым линиям, а его основания и параллельны плоскости и основание проходит через точку А (рис. 7). Рассчитаем поток напряжённости через рассматриваемую цилиндрическую поверхность. Поток через боковую поверхность равен 0, т.к. линии напряжённости параллельны боковой поверхности. Тогда полный поток складывается из потоков и проходящих через основания цилиндра и . Оба эти потока положительны =+; =; =; ==; N = 2.

– участок плоскости лежащий внутри выбранной цилиндрической поверхности. Заряд внутри этой поверхности равен q.

. Тогда ;

СГСЭ ;

Итак величина не зависит от положения рассматриваемой точки А и определяется только поверхностной плоскостью зарядов . Вектор всюду направлен перпендикулярно плоскости,

а) если >0 от плоскости (рис. 8).

б) если <0 тогда к плоскости (рис. 9).

3. Поле двух параллельных плоскостей

Плоскости заряжены разноимёнными зарядами с плотностями +s и -s (рис.10). напряжённость полей обеих плоскостей между плоскостями направлены в одну сторону, следовательно, их геометрическая сумма является их арифметической суммой в вакууме .

И так: во всех точках пространства между плоскостями, вектор напряжённости имеет одинаковую величину и направлен от положительно заряженной плоскости до отрицательно заряженной плоскости, т.е. поле между плоскостями однородное. Вне этих плоскостей поле равно “0” .

Пример решения задачи на вычисление электрических полей

Металлическое кольцо радиусом R имеет заряд q. Чему равны напряжённость поля и потенциал:

а) на расстоянии а от центра вдоль оси, перпендикулярной плоскости кольца;
б) в центре кольца?

Решение:

Возьмём элемент кольца , который создаёт в точке А электрическое поле напряжённостью (рис.11). Вектор напряжённости направлен по линии , соединяющей элементы кольца с зарядом (– можно принять за точечный заряд) с точкой А. Для нахождения суммарного поля надо геометрически сложить все поля, создаваемые каждым элементом: . Вектор напряжённости имеет две составляющие: (нормальная и касательная составляющие).

Составляющие от каждых двух диаметрально расположенных элементов взаимно уничтожаются, тогда результирующие поле и вектор направлен вдоль оси. Из рисунка 24 следует, что ; где . Учитывая, что напряжённость поля точечного заряда получим: .

Для нахождения потенциала суммируем алгебраически потенциалы, создаваемые отдельными элементами :

В центре кольца а = 0, поэтому из предыдущего следует, что ; .