Урок геометрии по теме "Правильные многогранники", 10-й класс

Разделы: Математика

Класс: 10


Цель урока: Познакомить учащихся с новым типом выпуклых многогранников – правильными многогранниками.

Задачи урока:

  1. Обучающие:
  • Ввести понятие правильного многогранника.
  • Рассмотреть свойства правильных многогранников.
  1. Развивающие:
  • Формирование пространственных представлений учащихся.
  • Формирование умения обобщать, систематизировать, видеть закономерности.
  • Развитие монологической речи учащихся.
  1. Воспитательные:
  • Воспитание эстетического чувства.
  • Воспитание умения слушать.
  • Формирование интереса к предмету.

Оборудование: Мультимедийный проектор, на каждой парте пять правильных многогранников, раздаточный материал (карточки с таблицей), демонстрационные модели многогранников (склеенные тетраэдры, параллелепипед).

Ход урока

Тема нашего урока “Правильные выпуклые многогранники” и эпиграфом урока являются слова английского писателя Льюиса Керролла, автора всем вам известной книги “ Алиса в стране чудес” (в течении урока используется презентация).

(Слайд № 1) зачитывается эпиграф.

Откройте тетради, запишите сегодняшнее число и тему урока “ Правильные выпуклые многогранники”. Два понятия в формулировке темы урока вам знакомы, многогранники и выпуклые.

  • Дайте определение многогранника
  • Какой многогранник называется выпуклым?

(Слайд № 2). Определите, какие из многогранников, изображенных на рисунке, являются выпуклыми?

Нами уже использовались словосочетания “правильные призмы” и “правильные пирамиды”. Оказывается, новая комбинация знакомых понятий образует совершенно новое с геометрической точки зрения понятие. Какие же выпуклые многогранники будем называть правильными? Послушайте внимательно определение.

(Слайд № 3). Выпуклый многогранник называется правильным, если его грани являются правильными многоугольниками с одним и тем же числом сторон и в каждой вершине многогранника сходится одно и то же число ребер.

Убедимся что обе части определения необходимы. Уберём вторую часть определения. Выпуклый многогранник называется правильным, если его грани являются правильными многоугольниками с одним и тем же числом сторон

Посмотрите на многогранник. (Демонстрируется модель многогранника, который получается из двух правильных тетраэдров, приклеенных друг к другу одной гранью). Оставляет ли он впечатление правильного многогранника? (Нет!). Посмотрим на его грани - правильные треугольники. Посчитаем число рёбер, сходящихся в каждой вершине. В некоторых вершинах сходятся три ребра, в некоторых – четыре. Вторая часть определения правильного выпуклого многогранника не выполняется и рассматриваемый многогранник, действительно, не является правильным.

Попробуем убрать первую часть определения. Выпуклый многогранник называется правильным, если в каждой вершине многогранника сходится одно и то же число ребер.

Посмотрите на этот многогранник (демонстрируется модель параллелепипеда). Подсчитаем число ребер выходящих из каждой вершины – три ребра, грани не являются правильными многоугольниками. Первая часть определения не выполняется и этот многогранник не является правильным.

Таким образом, когда будете давать определение, помните об обеих его частях. Выпуклый многогранник называется правильным, если его грани являются правильными многоугольниками с одним и тем же числом сторон и в каждой вершине многогранника сходится одно и то же число ребер.

Вы знаете, что при вершине многогранного угла не менее трех плоских углов.

  • Какова сумма плоских углов при вершине выпуклого многогранника? (меньше 3600).

Давайте, посмотрим, какие правильные многоугольники могут быть гранями правильного многогранника и сколько правильных многогранников существует.

Исследуем этот вопрос. Результат оформим в виде таблицы (учитель на доске дети в тетрадях)

Форма граней Сумма плоских углов при

Вершине многогранника

600 * 3 =1800

600 * 4 =2400

600 * 5 =3000

900 * 3=2700

1080 * 3=3240

Всего существует пять видов правильных выпуклых многогранников. Их гранями являются правильные треугольники, правильные четырёхугольники (квадраты) и правильные пятиугольники.

(Слайды № 4 - 8). Запишите в тетрадях названия этих правильных выпуклых многогранников.

Исследовательская работа “Формула Эйлера”

Изучая любые многогранники, естественнее всего подсчитать, сколько у них граней, сколько рёбер и вершин. Подсчитаем и мы число указанных элементов правильных многогранников и занесём результаты в таблицу (раздаточный материал)

Работа на карточках (тетраэдр и куб все вместе, а остальные многогранники по рядам)

Проверим результаты заполнения таблицы (слайд № 9).

Правильный многогранник Число граней Число вершин Число ребер Г+В
Тетраэдр 4 4 6  
Куб 6 8 12  
Октаэдр 8 6 12  
Додекаэдр 12 20 30  
Икосаэдр 20 12 30  

Названия этих многогранников пришли из Древней Греции, и в них указывается число граней: “эдра” - грань; “тетра” - 4 ; “гекса” - 6; “окта” - 8; “икоса” - 20; “додека” - 12

Анализируя таблицу, возникает вопрос: “Нет ли закономерности в возрастании чисел в каждом столбце?” По-видимому, нет.

Но можно рассмотреть сумму чисел в двух столбцах, хотя бы в столбцах “грани” и “вершины” (Г + В). Заполните четвертый столбец Г+В (число граней плюс число вершин).

(Слайд № 10). Вот теперь закономерности может не заметить только “слепой”. Сформулируем её так: “Сумма числа граней и вершин равна числу рёбер, увеличенному на 2 ”, т.е. Г + В = Р + 2. Запишите в тетрадь.

Итак, мы вместе сделали открытие, мы “открыли” формулу, которая была подмечена уже Декартом в 1640 г., а позднее вновь открыта Эйлером (1752), имя которого с тех пор она носит. Формула Эйлера верна для любых выпуклых многогранников. Запомните эту формулу.

Хотя действительно “Правильных многогранников вызывающе мало, но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных наук”.

О том, как использовали правильные многогранники в своих научных фантазиях учёные, нам расскажет Ф.И. (сообщение учащегося)

Сообщение “Правильные многогранники в философской картине мира Платона”

(Рассказ (слайд № 11)).

Правильные многогранники иногда называют Платоновыми телами, поскольку они занимают видное место в философской картине мира, разработанной великим мыслителем Древней Греции Платоном (ок. 428 – ок. 348 до н.э.). Платон считал, что мир строится из четырёх “стихий” - огня, земли, воздуха и воды, а атомы этих “стихий” имеют форму четырёх правильных многогранников. Тетраэдр олицетворял огонь, поскольку его вершина устремлена вверх, как у разгоревшегося пламени; икосаэдр – как самый обтекаемый – воду; куб – самая устойчивая из фигур – землю, а октаэдр – воздух. В наше время эту систему можно сравнить с четырьмя состояниями вещества - твёрдым, жидким, газообразным и пламенным. Пятый многогранник – додекаэдр символизировал весь мир и почитался главнейшим. Это была одна из первых попыток ввести в науку идею систематизации.

(Слайд № 12). Задача 1. Определите количество граней, вершин и рёбер многогранника, изображённого на рисунке. Проверьте выполнимость формулы Эйлера для данного многогранника.

Большой интерес к формам правильных многогранников проявляли также скульпторы, архитекторы, художники. Их всех поражало совершенство, гармония многогранников. Леонардо да Винчи (1452 – 1519) увлекался теорией многогранников и часто изображал их на своих полотнах.

(Слайд №13)

Сальвадор Дали на картине “Тайная вечеря” изобразил И.Христа со своими учениками на фоне огромного прозрачного додекаэдра.

(слайд № 14)

Знаменитый художник, увлекавшийся геометрией Альбрехт Дюрер (1471-1528) в известной гравюре “Меланхолия”, на переднем плане также изобразил додекаэдр.

Подходит к концу урок, подведём итоги.

  • Что нового вы узнали сегодня на уроке?

Дома: Домашнее задание будет сегодня творческим на ваш выбор

  1. № 72 – 75 склеить модели правильных многогранников на выбор
  2. Сообщение в подтверждение эпиграфа

(Раздаточный материал)

Правильный многогранник Число Граней

Г

Число Вершин

В

Число Рёбер

Р

Сумма числа граней и вершин

Г+В

Тетраэдр        
Куб        
Октаэдр        
Додекаэдр        
Икосаэдр        

Презентация