Дидактическая игра, как средство активизации познавательной деятельности младших школьников на уроках математики

Разделы: Начальная школа


1. Дидактическая игра – средство активизации познавательной деятельности.

Активизация познавательной деятельности учащихся на уроках – одно из наиболее существенных требований обеспечивающие качества обучения.

Формирование интереса к учению – важное средство повышения качества обучения. Это особенно важно в начальной школе, когда еще только формируются и определяются постоянные интересы к тому или иному предмету. Чтобы формировать у учащихся умения самостоятельно пополнять свои знания необходимо воспитывать у них интерес к учению, потребность в знаниях.

Одним из важнейших факторов развития их интереса к учению является понимание детьми необходимости того или иного изучаемого материала. Для развития познавательного интереса к изучаемому материалу, большое значение имеет методика преподавания данного материала.

Дидактическая игра – одно из эффективных средств развития интереса к учебному предмету. Она вызывает у детей живой интерес к процессу познания, активизирует их познавательную деятельность и помогает легче усвоить учебный материал.

В практике начальной школы дидактические игры могут выступать самостоятельно или взаимно дополнять друг друга. Использование каждого вида игры определяется целями, содержанием учебного материала, возрастными особенностями учащихся, умениями и навыками в проведении подобных игр.

Игра только внешне кажется развлечением, в действительности она требует серьезной предварительной подготовки со стороны учителя и учащихся. В процессе игры от детей требуется выдержка, большое умственное напряжение, проявление самостоятельности. Но игра всегда приносит удовлетворение и радость и не нужно боятся, что она нанесет ущерб научности. Сделав материал доступным, интересным, игра создает богатые возможности для выявления у учащихся общих знаний, понятий, установлений межпредметных связей. Кроме того она способствует сплочению детского коллектива, формированию у учащихся взаимного уважения и понимания, влияет на отношения учителя и ученика, делая их более доброжелательными. Но надо предостеречь начинающих учителей: злоупотребление игрой в учебном процессе, несмотря на активность детей, может привести к пробелам в их знаниях.

Активизация деятельности учащихся на уроке – одно из основных направлений совершенствования учебно-воспитательного процесса в школе. Сознательное и прочное усвоение знаний учащихся проходит в процессе их активной умственной деятельности. Поэтому работу следует организовывать на каждом уроке так, чтобы учебный материал становился предметом активных действий ученика.

2. Методика проведения дидактических игр на уроках математики.

Игра является одним из важных средств в усвоении знаний, развитии и воспитании учащихся. Она может быть применена в рамках разных методов обучения.

Приведу для примера систему игр и занимательных заданий по математике для учащихся начальных классов, где используются разнообразные методы обучения.

К ним относятся игры, в основе которых лежит объяснительно-иллюстративный метод обучения. Эти игры используются на этапе объяснения нового материала. С помощью такого вида игр учитель сообщает новые знания на основе использования наглядных средств, беседы и т.д.

Учащиеся слушают, смотрят, воспринимают, осознают и запоминают сообщенные знания.

Приведу пример игры учащихся II класса, цель которой состоит в объяснении приема сложения однозначных чисел с переходом через десяток.

Украсить елочку шарами.

Детям предлагается рассмотреть пример под рисунком и нарисовать на первом ярусе елочки число шаров, равное первому слагаемому. Но втором и третьем ярусах нужно нарисовать такое их число, которое равно второму слагаемому. При этом количество шаров на втором ярусе должно дополнять количество шаров на первом до 10. На третьем ярусе дети должны изобразить остальные шары.

В этой игре ученики осознают приемы сложения на основе наглядности. Характерной чертой объяснительно-иллюстративного метода является выполнение действий по образцу.

Примером такой игры может служить также старинная китайская игра “Танграм”, согласно правилам которой дети по образцу из частей квадрата составляют рисунки гуся, журавля, домика и т.д.

Знания, полученные на основе объяснительно-иллюстративного метода обучения, закрепляются системой игровых задании для приобретения учащимися соответствующих умении и навыков. С помощью системы игр и занимательных заданий учитель организует деятельность учащихся по неоднократному воспроизведению сообщенных им знаний или способов деятельности. Воспроизведение способа деятельности или осознанного правила является главным признаком репродуктивного метода обучения. Он широко используется при формировании устных и письменных вычислений и умений в решении задач.

Так, в игре “Лучший летчик” ученики I класса практически воспроизводят вычислительный прием прибавления и вычитания трех.

Содержание игры. До игры учитель проводит небольшую беседу, выясняя у детей: “Кто хочет стать летчиком? Каким дол жен быть летчик? Что он должен хорошо знать и уметь?” Далее обобщает: “Многое должен знать и уметь летчик, чтобы уверенно вести свой самолет к назначенной цели. И прежде всего он должен правильно вести расчеты”.

“Чтобы летчиком стать,
Чтобы в небо взлететь,
Надо многое знать,
Надо много уметь.
И при этом и при этом,
Вы заметьте-ка,
Летчикам помогает
Арифметика”.

(В. Корыстылев, М. Львовский)

На доске записаны 3 столбика примеров, под ними - рисунки самолетов. Над каждым примером - 3 ответа, один из них правильный, другие неверные:

4 7 6

3+3

5 7 6

4+3

3 4 5

2+3

8 7 9

10-3

6 7 8

5+3

10 9 7

8+2

Класс делится на 3 команды. В каждой команде назначается летчик. Учитель вызывает трех летчиков, остальные - контролеры. Каждый из летчиков производит расчеты (решает свой столбик примеров, начиная с нижнего примера) и правильно ведет свой самолет по намеченному курсу. Решив пример, летчик делает вокруг него петлю (обводит его мелом) и показывает линией, куда должен подняться самолет (он проводит линию к правильному ответу). Далее каждый летчик делает новый расчет (решает второй пример) и поднимает свой самолет выше, показывая мелом правильный ответ.

В конце игры подводятся итоги. Учитель показывает на пример, контролеры подтверждают или исправляют путь движения самолета. Все правильные ответы записывают справа от примеров, другие ответы стирают. Выявляют лучшего летчика. Ему учитель выдает рисунок самолета. Допущенные ошибки анализируются.

К другой группе относятся игры, где ученики производят действия в уме. Это игры, направленные на формирование вычислительных навыков.

Приведу примеры таких игр.

Игра “Телефон”.

Идет соревнование по рядам. Каждому ученику, сидящему за партой учитель шепотом называет однозначное число так, чтобы не слышали другие ученики класса. Далее учитель показывает на следующую схему, записанную на доске:

Например, учитель называет шести ученикам, сидящим за первыми партами, числа: 2, 3, 4, 2, 3, 4 – и показывает на первый прямоугольник. Все ученики, получившие от учителя числа, прибавляют к нему число 5, и каждый из них поворачивается к ученику, сидящему за ним, и называет ему результат. Далее учитель показывает на следующий прямоугольник. Ученики, сидящие за второй партой, производят действие умножения на 2 и тихо называют ответы ученикам, сидящим за ними, и т.д. Игра продолжается до тех пор, пока ученики не выполняют всех действий по схеме. Сидящие за первыми партами играют роль контролеров. Они выполняют всю цепочку действий. В конце соревнования ученики, сидящие за последними столами, должны записать окончательные ответы в схему, а сидящие за первыми – утвердить их или отвергнуть.

I ряд II ряд III ряд
2 3 4

Побеждает тот ряд, который правильно и раньше всех выполнит всю цепочку действий. Если обнаружены ошибки, учитель проверяет с учениками всю цепочку действий. К анализу ошибок привлекаются слабые ученики.

С помощью таких игр и подобных учащиеся воспроизводят вычислительные приемы в уме. Эти игры направлены на формирование вычислительных навыков.

В настоящее время все настойчивее выдвигается задача подлинного развивающего обучения, которое не только бы давало сумму готовых знаний и навыков, но и формировало бы обобщенные умения и способности, дающие возможность овладевать неизвестными ранее способами практической и теоретической деятельности.

Искусство обучения на современном этапе состоит в том, чтобы подводить учащихся к выполнению все более и более усложняющихся задач. Важно, чтобы обучение вызывало напряжение мысли, давало возможность сделать пусть маленькое, но открытие: найти самостоятельно правило, ответ, решить новую для учеников задачу.

При обучении математике в начальных классах существуют разные пути поиска новых знаний.

На этапе объяснения новых знаний ученики осуществляют его на чувственной основе с помощью действий с различными средствами наглядности: предметами, рисунками, схемами, моделями. Преобразуя один вид наглядности в другой, ученики переводят информацию, заложенную в средствах наглядности, на язык математики и словесно описывают подмеченную закономерность, формулируя ее в виде правила, свойства, алгоритма действия.

Учащиеся II класса могут самостоятельно подметить доступные им математические связи. Например, в игре “По какой тропинке ты пойдешь?” учительница предлагает угадать по цепочкам примеров, в которых зашифрованы две тропинки, по какой из них связь с туристической базой не нарушена (где можно пройти успешно, потому что одна из них “затоплена водой”).

1-я тропинка 2-я тропинка
9 + 14 5 + 19
14 + 9 19 + 5
23=14 + 9 24=16 + 5
23 - 14=9 24 - 15=9
23 - 9=14 24 - 5=19

Учащиеся, “исследуя” цепочки взаимосвязанных примеров, догадываются, что по первой тропинке можно пройти к туристической базе, вторая же “залита водой”, так как во второй цепочке связь между примерами нарушена.

Широкое поле деятельности для самостоятельного решения представляют собой занимательные упражнения: математические фокусы, математические лабиринты, задания на сообразительность и смекалку. Приведем примеры таких заданий.

1. Как наиболее простым способом вычислить суммы этих чисел?

0 11 2 3 4 5 6 7 8 9 10

2. Какие цифры закрыты карточками?

3. Математический лабиринт “Догони-ка!”

По этому лабиринту мысленно “бегают” Миша и Сережа. Они соревнуются в расчетах: находят суммы 4 произведений несколько раз, получая каждый раз число 60. Миша и Сережа составили 5 примеров с ответом 60. А сколько вы найдете таких ходов?

4. Задание на смекалку.

Примечание. Задание целесообразно провести во второй половине дня.

Разместите числа от 1 до 12 (по одному числу в каждой фигуре) так, чтобы они составляли одну и ту же сумму в следующих направлениях: в каждой из двух средних центральных колонок, в 4 треугольниках вместе, в 4 квадратах вместе.

5. Задачи на сообразительность.

а) Кто какую игрушку спрятал? Играя, каждая из трех подруг – Катя, Галя и Оля – опустила в свой “чудесный” мешочек одну из игрушек: медвежонка, зайчика, слоненка. Известно, что Катя не прятала зайчика. Оля не прятала ни зайчика, ни медвежонка. Предлагается узнать, у кого какая игрушка.

Приведенные примеры игр убеждают в том, что в игре можно запрограммировать любой метод обучения.

Умелое руководство игрой требует мастерства от учителя. Перед проведением игры надо доступно изложить сюжет, распределить роли, поставить перед детьми познавательную задачу, продумать методику проведения игры, подготовить необходимое оборудование, сделать нужные записи на доске. Если дидактическая задача скрыта сюжетом, ролью, игровым действием, то в ходе беседы с детьми учитель должен обратить на нее внимание.

В игре (в этой или иной роли) должен участвовать каждый ученик класса. Если у доски осуществляет игровую деятельность часть учащихся, то все остальные дети должны выполнять роль контролеров, судей, учителя и т.д. Характер игровой деятельности учащихся зависит от места игры на уроке или в системе уроков (надо сказать, что она может быть проведена на любом этапе урока и на уроке любого типа).

Игре свойственны определенный темп, ритм; в процессе ее недопустимы пространные объяснения; правила должны излагаться кратко, доступно, лаконично. Снижает интерес обилие замечаний дисциплинарного характера, пассивное ожидание ребенком своего участия в игре.

Учитель должен сам показать живой интерес к игре, увлечь учащихся. В некоторых играх он создает ситуацию ожидания, загадочности. Успех игры зависит от того, как учитель ее проводит. Вялость, безразличие улавливается даже младшими школьниками, и интерес детей к игре быстро угасает.

В игре дети должны себя чувствовать свободно, непринужденно, испытывать удовлетворение от сознания своей самостоятельности и полноценности.

В большинстве игр целесообразно вносить элементы соревнования, что повышает активность детей в процессе обучения. Ошибки учащихся надо анализировать не в ходе. игры, а в конце, чтобы не нарушать впечатления. К разбору ошибок надо привлекать слабых учащихся. Форма проведения игры может быть разной: коллективной, групповой и индивидуальной.

При объяснении нового материала или его первичном закреплении целесообразно проводить игру со всем классом.

В работе со слабыми учащимися целесообразно проводить индивидуальные игры с раздаточным материалом. В своей работе я почти на каждом уроке использую дидактические игры. В приложении можно увидеть несколько фрагментов уроков, с использованием игр на разных этапах урока.

Приложение

Литература

  1. Выготский Л.С. Игра и ее роль в психическом развитии ребенка // Вопросы психологии. 1966. №6. С. 12 – 14.
  2. Давайте поиграем. Под ред. А.А. Столяра. М.: “Просвещение”, 1991.
  3. Жикалкина Т.К. Игровые и занимательные задания по математике. М.: “Просвещение”, 1989.
  4. Истомина Н.Б. Активизация учащихся на уроках математики в начальных классах. М., 1985.
  5. Карпова Е.В. Дидактические игры в начальный период обучения. Ярославль: “Академия развития”, 1997.
  6. Коваленко В.Г. Дидактические игры на уроках математики. М.: “Просвещение”, 1990.
  7. Талызина Н.Ф. Формирование познавательной деятельности младших школьников. М, 1988.