Урок алгебры в 10-м классе. Тема: "Примеры решения тригонометрических уравнений"

Разделы: Математика


Цель урока:

  1. Закрепить навыки решения простейших тригонометрических уравнений.
  2. Сформировать понятие решения тригонометрических уравнений сводящихся к квадратным.
  3. Развивать умения сравнивать, выявлять закономерности, обобщать.
  4. Воспитывать ответственное отношение к труду.

Оборудование:

  1. Карточки для повторения формул решения простейших тригонометрических уравнений.
  2. Плакат с алгоритмом решения тригонометрических уравнений (большой на доску и каждому на стол).

Литература: Учебник Колмагорова “Алгебра и начала анализа, 10-11 класс”.

Ход урока.

I. Повторение

1. sin x = a, cos x = a, tg x = a

При каких значениях а эти уравнения имеют решения?
[sin x и cos x при /а/ 1 tg x при любом a]

2. Повторить формулы решения простейших тригонометрических уравнений (на карточках):

sin x = а х = (-1)к arc sin a+ к, к z
sin x = 0
sin x = 1
sin x = -1

cos x = a x=± arc cos a + 2 , n z
cos x = 0
cos x = 1
cos x = -1

tg x = a x = arc tg a + n, n z

arc sin (-а) = - arc sin а
arc cos (-а) = - arc cos а
arc tg а (-а) = - arc tg а

II. Проверка домашнего задания.

Игра “Поле чудес”. Правила игры несколько изменены, а название оставлено.

Правила игры.

  • Учитель берет понравившееся ему высказывание или слова из песни, стихотворения, пословицу. По количеству букв в этом высказывании подбирается столько же примеров или задач так, чтобы одинаковым буквам соответствовали одинаковые ответы.
  • Каждому ученику учитель дает карточку с заданиями и ученик сразу начинает решать.
  • На доске записаны буквы, которые встречаются в высказывании, и под ними ответы, которые соответствуют этим буквам.
  • Ниже записаны числа по порядку (по количеству букв в высказывании).
  • Ученик, выполнявший задание, называет номер своей карточки и букву, под которой записан ответ.
  • Учитель под числом (…) ставит букву (…). И так далее. Ученики стараются быстрее решить, чтобы получить следующую карточку.
  • За правильно решенные 2-3 задания он может получить оценку. Поэтому желательно карточек иметь более чем число.

Ум хорошо, а два лучше
12 3 45 67 8 9 10 11 12 13 14 15 1 6 17

а в д
n z , к z , n z
е л м
, n z , n z , n z
о р у
, n z , n z , n z
x ч ш
, n z , n z , n z

Уравнение:

, n z у
cos x = -1 х = +2 n, n z м
, n z x
, n z o
, n z p
, n z o
, n z ш
, n z o
, n z a
, n z д
, k z в
, n x a
, n z л
, n z у
, n z ч
, n z ш
, n z е

Дополнительные уравнения

, n z
, k z
, n z
, k z
, n z
, n z
, n z
, n z
, n z
, n z
, k z
, n z
, k z
, k z
, n z
, n z

III. Объяснение нового.

1.

  • В предыдущих параграфах были выведены формулы корней простейших тригонометрических уравнений: sin x=a, cos x=a, tg x=a
  • К этим уравнениям сводятся другие тригонометрические уравнения. Для решения большинства из них требуется применение формул преобразований тригонометрических выражений.
  • Сегодня на уроке мы рассмотрим уравнение, сводящиеся к квадратным.

2.

  • На доске записаны уравнения:

а) 3х-8=х+6 (линейное уравнение)
б) х2+2х-15=0 (квадратное уравнение)
в) х4-5х2+4=0 (квадратное уравнение относительно х2).
г) 2 cos2x-cosx-1=0 (квадратное уравнение относительно cosx)

  • Какие из них являются квадратными?
  • Общий вид квадратного уравнения:

ax2+bx+c=0

,

Корни квадратного уравнения, приведенного, т.е. х2+рх+q=0 можно находить по теореме Виета:

Х12=-р; х1х2=q

  • х4-5х2+4=0 – квадратное уравнение относительно х2. Это уравнение назвали биквадратным. Общий вид ах4+вх2+с=0, где а± 0.
  • Его легко решить методом введения новой переменной, т.е. х2 и уравнение принимает вид: а2-5а+4=0

3. Последнее уравнение тоже квадратное, относительно cosx. Для его решения введем новую переменную. Пусть y=cosx, тогда уравнение можно записать виде: 2-у-1=0. Получили квадратное уравнение.

Д=1+8=9;

Следовательно:

а) cosx=1 б) cosx=

х=2p n, n z , n z

 , n n

Ответ: 2 n, n z; , n z

4. Решим уравнение:

 Надо привести уравнение к одной функции. Для этого заменим cos2 x на 1-sin2x. Получим относительно xinx квадратное уравнение:

Пусть xinx=у, тогда 2+5у-3=0

Получили квадратное уравнение

Д=25+24=49

;

Следовательно:

а) б) xinx=-3 – решение не имеет

, к z

, к z

Ответ: , к z

5.

tgx-2ctgx=-1. Функции разные. Используя тождество tgx? ctgx=1, выразим , заменим ctgx через tgx.

пусть tgx=у, то у2+у-2=0 (дальше, как в предыдущем случае).

6. Для закрепления

4 xin2x- cosx-1=0
Заменим xin2x на 1- cos2x. Получим
4(1- cos2x)- cosx-1=0
4-4 cos2x- cosx-1=0
-4 cos2x- cosx+3=0
4 cos2x+ cosx-3=0

пусть cosx=у, то

2+у-3=0

Д=1-48=49 ;

Следовательно,

а) cosx=-1 б)

х= +2 n, n z , n z

Ответ: +2 n; , n z

7. №164 (в) - cамостоятельно

2 xin2x- xinx-1=0
пусть xinx=у, то
2-у-1=0

Д=1+8=9;

Следовательно,

а) xinx=1 б)

, n z , n z

z.

Ответ: , n z

, к z

№ 165(б)

2 xin2x+3 cosx=0

Заменим xin2x на 1- cos2x получим

2(1- cos2x)+3 cosx=0
2-2 cos2x+3 cosx=0
-2 cos2x+3 cosx+2=0, т.е.
2 cos2x-3 cosx-2=0

пусть cosx=у, то
2-3у=0

Д=9+16=25

;

Следовательно,

а) cosx=2 б)

решение не имеет , n z

, n z

, n z

Ответ: , n z

8.

Итог урока

Алгоритм решения тригонометрических уравнений.

  1. Привести уравнение к квадратному, относительно тригонометрических функций, применяя тригонометрические тождества.
  2. Ввести новую переменную.
  3. Записать данное уравнение, используя эту переменную.
  4. Найти корни полученного квадратного уравнения.
  5. Перейти от новой переменной к первоначальной.
  6. Решить простейшие тригонометрические уравнения.
  7. Записать ответ.