Тема урока "Теорема Виета"

Разделы: Математика


Цели урока:

  • Ознакомить учащихся с теоремой Виета и ее доказательством.
  • Научить применять теорему Виета при решении уравнений,
  • Развить интерес к предмету через игровые формы работы.

Ход урока

I. Начало урока:

1. Организационный момент,

2. Целевая установка.

II. Проверка усвоения предыдущей темы;

Фронтальный опрос.

А) Какое уравнение называется квадратным?

Б) Какие виды квадратных уравнений вы знаете?

В) Какое уравнение называется неполным квадратным?

Г) Какое уравнение называется приведенным?

Д) Что значит - решить уравнение?

Е) Сколько корней может иметь квадратное уравнение?

Ж) От чего зависит количество корней квадратного уравнения?

З) Как зависит?

И) Какое выражение называют дискриминантом?

Теперь решим устные упражнения, которые даны на доске. В это время три ученика выйдут к доске и будут, решать следующие уравнения.

(1)

(2)

(3)

Устные упражнения.

Укажите в квадратном уравнении его коэффициенты

,

,

,

Замените уравнение равносильным ему приведенным уравнением.

,

,

Сколько корней имеет квадратное уравнение?

,

,

,

.

Какой одночлен надо подставить вместо многоточия, чтобы можно было представить в виде квадрата двучлена?

,

,

,

III. Объяснение новой темы.

Теперь вы должны отгадать зашифрованное слово. Класс делится на две группы. Каждой группе дается несколько примеров и задач и карточки с правильными ответами. На обратной стороне каждой карточки записана буква. (Здесь лучше дать не очень трудные примеры и задачи на логическое мышление). Группы соревнуются, кто быстрее расшифрует слово.

Расшифровывается слово “Франсуа Виет”.

Это имя великого французского математика. С этим именем связанна тема этого урока. Франсуа Виет – французский математик, живший в 16 веке. Он родился в 1540 году в небольшом городке на юге Франции. Он обладал огромной трудоспособностью, мог работать по трое суток без отдыха. Он был одним из первых, кто ввел систему алгебраических символов, разработал основы элементарной алгебры. Многие его результаты и открытия достойны восхищения. Свою знаменитую теорему, которую мы рассмотрим сегодня, он доказал в 1591 году. Это теорема выражает интересную закономерность, существующую между суммой корней квадратного уравнения и его коэффициентами, между произведением корней квадратного уравнения и его коэффициентами. Чтобы увидеть эту закономерность, обратимся к уравнению 1, которое решено на доске первым учеником. Чему равна сумма корней.

Давайте, сравним это число с коэффициентами уравнения! Вы видите, что оно равно второму коэффициенту уравнения 1,взятому с противоположным знаком.

Посмотрим, чему равно произведение корней?

С каким коэффициентом уравнения его удобно сравнить?

Какой вывод можно сделать? Теперь найдем сумму корней и произведение корней уравнения 2, которое решено на доске вторым учеником, и сравним эти числа с коэффициентами уравнения. Вывод:

Теорема. Сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

Формулировка теоремы повторяется учениками.

Доказательство.

Пусть X1 и X2 – корни квадратного уравнения x2+px+g=0

; ;

Найдем,

Найдем,

Уравнение 3 не приведенное, поэтому, для нее эта закономерность не выполняется. Но если уравнение заменить равносильным ему приведенным, то можно увидеть, что

Теореме Виета посвящены такие строки:

По праву достойна в стихах быть воспета
О свойстве корней Теорема Виета.
Что лучше, скажи, постоянства такого?
Умножишь ты корни и дробь уж готова
В числителе “С”, в знаменателе “А”.
А сумма корней тоже дроби равна
Хоть с минусом дробь – это что за беда?
В числителе “В”, в знаменателе “А”.

IV. Закрепление темы.

Теперь посмотрим, для чего нужна эта теорема, так ли она важна.

Упражнение 1. Найдем сумму и произведение корней квадратного уравнения, не решая его.

(1)

(2)

(3)

К доске вызываются ученики для решения этого упражнения. Чем можно воспользоваться для нахождения суммы и разности корней?

Упражнение 2. Найдем подбором кони уравнения.

(1)

(2)

Упражнение 3. Составим уравнение, корнями которого являются числа -2 и 5.

Самостоятельно составить уравнение, корнями которого являются числа 3 и 7.

Теперь скажите, можно ли решить эти задания, не зная теоремы Виета? Нужна ли эта теорема?

Дополнительные задания.

1) В каком из этих уравнений сумма корней равна -6,

а произведение корней равно - 16?

2) Можно ли 20 разбить на 2 слагаемых, чтобы их произведение равнялось 75?

На доске записан “столбик” чисел:

  • 1000
  • 40
  • 1000
  • 30
  • 1000
  • 20
  • 1000
  • 10

Все числа закрываются бумагой. Учитель открывает “столбик” число за числом, а кто-то из учеников быстро суммирует их устно и в конце называет ответ. Верно ли он сосчитал? ( Обычно многие называют ответ 5000, а на самом деле 4100.)

V. Подведение итогов урока.

Литература.

1. Рогановский Н.Н. Методика преподавания математики в средней школе. - Минск “Вышэйшая школа”, 1990.

2. Макарычев Ю.Н., Миндюк Н.Г. Алгебра 8кл. - М.: “Просвещение”, 1995.

3. Нагибин Ф.Ф., Канин Е.С. Математическая шкатулка. Пособие для учащихся 4-8 классов. – М.: Просвещение, 1988.