Вводный урок по теме "Элементы теории вероятностей и математической статистики"

Разделы: Математика


Цели урока.

Обучающие:

- знакомство с предметом теории вероятностей и математической статистики, местом теории вероятностей в системе научного познания мира.

Развивающие:

- формирование у учащихся единой научной картины мира и элементов научного мировоззрения путем исследования межпредметных связей теории вероятностей и различных наук;
- развитие навыков работы с текстом, основанных на технологии РКМЧП.

Воспитательные:

- развитие самостоятельности и навыков самоконтроля.

I Стадия вызова

На стадии вызова учитель объявляет учащимся о начале изучения нового предмета – «Элементы математической статистики и теории вероятностей», знакомит с учеными пособием и его авторами. Учащиеся включаются в обсуждение вопроса: «Где в реальной повседневной жизни мы сталкиваемся с этими науками? Что Вы о них знаете?» Учитель совместно с учениками заполняет таблицу:

Знаю Узнаю Хочу узнать
     

II Стадия осмысление.

На этапе осмысления учащимся для самостоятельной работы предлагается текст. Работая с текстом, ученики используют прием «чтение текста с пометками»:

«V» – я это знал;
«–» – я думал иначе;
«+» – я этого не знал (новая информация);
«?» – непонятная или недостаточная информация
«!» - заслуживает особого внимания

Наука угадывать.

Слова «случай», «случайность», «случайно» едва ли не самые употребительные в любом языке. Случайность противопоставляется ясной и четкой информации, строгому логическому развитию событий. Однако так уж велика пропасть между случайным и неслучайным? Ведь случайность, когда она проявляется в поведении не одного объекта, а многих сотен и даже тысяч объектов, обнаруживает черты закономерности. Философы говорят: «путь, которым необходимость идет к цели, вымощен бесконечным множеством случайностей».

Мир – это бесконечное многообразие явлений. Непосредственное общение с миром приводит к мысли, что все явления разделяются на два вида: необходимые и случайные. Необходимые кажутся нам явлениями неизбежно происходящими, а случайные – явлениями, могущими как произойти так и не произойти в одно и тоже время. Существование и изучение необходимых явлений представляется естественным, закономерным. А случайные явления в обыденном представлении кажутся нам крайне редкими, не имеющими закономерностей; они как бы нарушают естественный ход событий. Однако случайные явления происходят всюду и постоянно. В результате взаимодействия многих случайностей появляется ряд явлений, в закономерности которых мы не сомневаемся. Случайность и закономерность неотделимы друг от друга.

Почему явления представляются нам случайными?

1. Отсутствие полной информации о них. Например, вокруг земли летает спутник. Если больше о нем ничего не известно, то появление или не появление его в данной точке небесной сферы – явления случайные. Но если известны все параметры его полета, то эти явления достоверно предсказываются. В этом примере случайность или достоверность зависит от полноты информации о явлении.

2. Явления случайны в силу своей природы. Случайность или необходимость явлений может быть установлена при повторении некоторого комплекса условий. Но полная идентичность в повторении комплекса условий невозможна. Изменение комплекса условий, при котором явление должно произойти, влечет за собой изменение самого явления. Такие рассуждения приводят к мысли, что абсолютно необходимых явлений нет. Все явления в определенной мере случайны.

В 1718 году вышла в свет книга со странным по тем временам названием «Учение о случаях». Ее автор – французский математик Абрахам де Муавр (26.05.1667 - 27.11.1754) (Рисунок 1) провел следующий эксперимент: он измерил рост у 1375 случайно выбранных женщин и получил результата, который можно изобразить в виде кривой. Такая кривая задает так называемое нормальное распределение, которое часто встречается в природе.

Число 0,514 хорошо известно в демографии. Это число выражает долю мальчиков в общем числе новорожденных. Одним из первых обратил внимание на эту закономерность немецкий естествоиспытатель Александр Фридрих Вильгельм Гумбольт (1769 – 1858). Он высказал предположение, что это общий закон для всего человечества, и на каждую тысячу новорожденных приходится 514 мальчиков, а отношение числа мальчиков к числу девочек равно 22/21. Вслед за Гумбольтом подробно изучил эту проблему Пьер-Симон Лаплас (23.03.1749 – 05.03.1827) (Рисунок 2), но, обработав статистические данные, получил иные значения - 25/24. Наблюдения Лапласа проводились в Париже и длились около 40 лет. Естественно, он решил выяснить, почему имеется расхождение в результатах. Тщательно изучив метрические книги почти за 40 лет, Лаплас установил, что дети, отданные в приют, записываются в эти книги дважды: при рождении и после того, как попали в приют. А в приют отдавали больше девочек, чем мальчиков. Отсюда и увеличение доли девочек в общем числе новорожденных.

3. Представления о достоверности или случайности явления зависят от объективных закономерностей процесса познания. Процесс познания явления бесконечен в своей точности. Уровень этой точности зависит от науки, расширяющей и углубляющей это видение. На одном уровне развития научного знания явления кажутся достоверными, а на другом – случайными. Пример: ошибки измерений случайны. Но они уменьшаются при использовании измерительных приборов с увеличивающей точностью измерений. Однако абсолютной точности измерений достичь нельзя.

4. Природа случайности имеет свои истоки в наших представлениях о физическом строении материи. Принята структурно-системная организация материи, означающая, что материя организуется из частиц, находящихся в движении и различных видах связи. Из элементарных частиц слагается весь материальный мир. Автономность систем, наличие бесконечных видов движения рождают случайности связей элементов структур и систем.

Немаловажную роль в возникновении этой науки и развитии этой науки сыграли азартные игры, особенно игра в кости. Азартные игры появились на заре человечества. Так, в археологических раскопках, начиная с V тысячелетия до нашей эры, можно обнаружить астрагалы – специально обработанные кости животных с нанесенными на них точками. Для кого-то кости становились источником богатства, для кого-то – источником нищенства и позора. (Рисунок 3) Первая книга, в которой появились вероятностные представления, так и называлась: «Книга об игре в кости» Джероламо Кардано (24 .09 1501 — 21.09 1576). Те задачи, которые решал Кардано, вошли во все учебники и задачники по теории вероятностей, ведь выпадение кости – классический пример случайного события, которое и является предметом изучения теории вероятностей.

В истории развития теории вероятностей можно выделить следующие этапы.

1. Предыстория теории вероятностей. В этот период, начало которого теряется в глубине веков, ставились и примитивно решались задачи, которые позже будут отнесены к теории вероятностей. Никаких специальных методов решения в этот период не было. Этот период закончился в XVI веке появление работ Кардано, Пачоли, Тарталья.

2. Возникновение теории вероятностей как науки. В этот период вырабатываются первые специфические понятия, устанавливаются первые теоремы. Начало этого периода связано с именами Паскаля, Ферма, Гюйгенса. Этот период продолжается от середины XVI века до начала XVIII века. В этот период теория вероятностей находят свои первые применения в демографии, страховом деле, оценке ошибок наблюдения.

3. Следующий этап начинается с появления работы Я. Бернулли «Искусство предположения» (1713 год). Здесь была доказана теорема Бернулли, которая дала возможность широко применять теорию вероятностей к статистике. К этому периоду относятся работы Муавра, Лапласа, Гаусса, Пуассона, теория вероятностей начинает применяться в различных областях естествознания.

4. Следующий этап развития теории вероятностей связан, прежде всего, с русской (Петербургской) школой. Здесь можно назвать имена Чебышева, Маркова, Ляпунова. В это время теория вероятностей начинает широко применяться в различных областях естествознания, в первую очередь – в физике. Возникает статистическая физика, которая развивается в тесной связи с теорией вероятностей.

5. Современный этап развития теории вероятностей. Для успешного применения теории вероятностей к физике, биологии и другим наукам, а также к технике и военному делу необходимо было уточнить и привести в стройную систему основные понятия теории вероятностей. Поэтому этот период начался с установления аксиом науки. Первые работы этого периода связаны с именами Бернштейна, Мизеса, Бореля. Окончательное установление аксиоматики произошло в 30-е годы XX века, когда была опубликована и получила всеобщее признание аксиоматика Андрея Николаевича Колмогорова (Рисунок 4).

Сейчас невозможно указать ни одной области человеческой деятельности, где бы не применялись вероятностные исследования. Говорят о «стохастической революции в сознании». В современном языке стохастический означает «случайный», в древнегреческом stochastikos означало «умеющий угадывать».

Где сегодня используются вероятностно-статистические методы?

Начать по праву следует со статистической физики. Современное естествознание исходит из представления, согласно которому все явления природы носят статистический характер и законы могут получить точную формулировку только в терминах теории вероятностей. Статистическая физика стала основой всей современной физики, а теория вероятностей – ее математическим аппаратом. В статистической физике рассматриваются задачи, которые описывают явления, определяющиеся поведение большого числа частиц. Статистическая физика весьма успешно применяется в самых разных разделах физики. В молекулярной физике с ее помощью объясняют тепловые явления, в электромагнетизме – диэлектрические, проводящие и магнитные свойства тел, в оптике она позволила создать теорию теплового излучения, молекулярного рассеивания света. В последние годы круг приложений статистической физики продолжает расширяться.

Статистические представления позволили быстро оформить математическое изучение явлений ядерной физики. Появление радиофизики и изучение вопросов передачи радио сигналов не только усилили значение статистических концепций, но и привели к прогрессу самой математической науки – появлению теории информации.

Понимание природы химических реакций, динамического равновесия также невозможно без статистических представлений. Вся физическая химия, ее математический аппарат и предлагаемые ею модели являются статистическими.

Обработка результатов наблюдений, которые всегда сопровождаются и случайными ошибками наблюдений, и случайными для наблюдателя изменениями в условиях проведения эксперимента, еще в XIX столетии привела исследователей к созданию теории ошибок наблюдений, и эта теория полностью опирается на статистические представления.

Астрономия в ряде своих разделов использует статистический аппарат. Звездная астрономия, исследование распределения материи в пространстве, изучение потоков космических частиц, распределение на поверхности солнца солнечных пятен (центров солнечной активности) и много е другое нуждается в использовании статистических представлений.

Биологи заметили, что разброс размеров органов живых существ одного и того же вида прекрасно укладывается в общие теоретико-вероятностные законы. Знаменитые законы Менделя, положившие начало современной генетике, требуют вероятностно-статистических рассуждений. Изучение таких значительных проблем биологии, как передача возбуждения, устройство памяти, передача наследственных свойств, вопросы расселения животных на территории, взаимоотношения хищника и жертвы требует хорошего знания теории вероятностей и математической статистики.

Гуманитарные науки объединяют очень разнообразные по характеру дисциплины – от языкознания и литературы до психологии и экономики. Статистические методы все в более значительной мере начинают привлекаться к историческим исследованиям, особенно в археологии. Статистический подход используется для расшифровки надписей на языке древних народов. Идеи, руководившие Ж. Шампольоном при расшифровке древнего иероглифического письма, являются в основе своей статистическими (Рисунок 5). Искусство шифрования и дешифровки основано на использовании статистических закономерностей языка. Другие направления связаны с изучением повторяемости слов и букв, распределения ударений в словах, вычислением информативности языка конкретных писателей и поэтом. Статистические методы используются для установления авторства и изобличения литературных подделок. Например, авторство М.А. Шолохова по роману «Тихий Дон» было установлено с привлечением вероятностно-статистических методов. Выявление частоты появления звуков языка в устной и письменной речи позволяет ставить вопрос об оптимальном кодировании букв данного языка для передачи информации. Частота использования букв определяет соотношение количества знаков в наборной типографской кассе. Расположение букв на каретке пишущей машины и на клавиатуре компьютера, определяется статистическим изучением частоты сочетаний букв в данном языке (Рисунок 6). ()

Многие проблемы педагогики и психологии также требуют привлечения вероятностно-статистического аппарат. Вопросы экономики не могут не интересовать общество, поскольку с ней связаны все аспекты ее развития. Без статистического анализа невозможно предвидеть изменение количества населения, его потребностей, характера занятости, изменения массового спроса, а без этого невозможно планировать хозяйственную деятельность.

Непосредственно связаны с вероятностно-статистическими методами вопросы проверки качества изделий. Зачастую изготовление изделия занимает несравненно меньше времени, чем проверка его качества. По этой причине нет возможности проверить качество каждого изделия. Поэтому приходится судить о качестве партии по сравнительно небольшой части выборки. Статистические методы используются и тогда, когда испытание качества изделий приводит к их порче или гибели.

Вопросы, связанные с сельским хозяйством, уже давно решаются с широким использованием статистических методов. Выведение новых пород животных, новых сортов растений, сравнение урожайности – вот далеко не полный список задач, решаемых статистическими методами.

Можно без преувеличения сказать, что статистическими методами сегодня пронизана вся наша жизнь.

После знакомства учащихся с текстом полезно продемонстрировать учащимся понятия случайности и закономерности с помощью наглядных пособий. Это вращающийся диск с пронумерованными секторами, кубик с пронумерованными гранями, набор разноцветных шариков. Полезно также в качестве примера привести броуновское движение (Рисунок 7).

В известном сочинении поэта-материалиста Лукреция Кар «О природе вещей» имеется яркое и поэтическое описание явления броуновского движения пылинок:

«Вот посмотри: всякий раз, когда солнечный свет проникает
В наши жилища и мрак прорезает своими лучами,
Множества маленьких тел в пустоте, ты увидишь, мелькая,
Мечутся взад и вперед в лучистом сиянии света;
Будто бы в вечной борьбе они бьются в сраженьях и битвах.
В схватки бросаются вдруг по отрядам, не зная покоя.
Или сходясь, или врозь беспрерывно опять разлетаясь.
Можешь из этого ты уяснить себе, как неустанно
Первоначала вещей в пустоте необъятной мятутся.
Так о великих вещах помогают составить понятье
Малые вещи, пути намечая для из достиженья,
Кроме того, потому обратить тебе надо вниманье
На суматоху в телах, мелькающих в солнечном свете,
Что из нее познаешь ты материи также движенье»

Первая возможность экспериментального исследования соотношений между беспорядочным движением отдельных частиц и закономерным движением их больших совокупностей появилась, когда в 1827 году Ботаник Р. Броун открыл явление, которое по его имени названо «броуновским движением». Броун наблюдал под микроскопом взвешенную в воде цветочную пыльцу. К своему удивлению он обнаружил, что взвешенные в воде частицы находятся в непрерывном беспорядочном движении, которое не удается прекратить при самом тщательном старании устранить какие либо внешние воздействия. Вскоре было обнаружено, что это общее свойство любых достаточно мелких частиц, взвешенных в жидкости. Броуновское движение – классический пример случайного процесса.

III Стадия рефлексии. Подводя итог урока, необходимо добиться понимания учащимися следующих важных положений:

1. В окружающей реальности действую два основных типа законом – статистические законы и законы жесткой детерминации.

2. Законы обоих типов объективны, несводимы друг к другу и выражают необходимые связи в природе.

3. Детерминистические законы представляют собой низший уровень процесса познания окружающего нас мира, статистические законы более современны, они отражают объективные связи в природе и являются более высоким этапом познания.

На этапе рефлексии учащимся предлагается составить синквейн и в поэтической форме выразить свое отношение к изученном материалу.

Справка: СИНКВЕЙН – приём технологии развития критического мышления, на стадии рефлексии.

Это короткое литературное произведение, характеризующее предмет (тему), состоящее из пяти строк, которое пишется по определённому плану. Слово «синквейн» происходит от французского слова «пять».

ПРАВИЛА НАПИСАНИЯ СИНКВЕЙНА

1 строчка – одно слово – название стихотворения, тема, обычно существительное.

2 строчка – два слова (прилагательные или причастия). Описание темы, слова можно соединять союзами и предлогами.

3 строчка – три слова (глаголы). Действия, относящиеся к теме.

4 строчка – четыре слова – предложение. Фраза, которая показывает отношение автора к теме в 1-ой строчке.

5 строчка – одно слово – ассоциация, синоним, который повторяет суть темы в 1-ой строчке, обычно существительное.

Примеры синквейнов:

Случайность
Ускользающая, непознанная.
Осознать, изучить, понять
Случайность есть проявление закономерности.
Реальность.

Теория вероятностей.
Новая, интересная.
Изучим, поймем, заинтересуемся.
Присутствует во всех областях.
Инструмент познания.