Урок математики по теме "Прямая и обратная пропорциональность"

Разделы: Математика


Основные цели:

  • ввести понятие прямой и обратной пропорциональной зависимости величин;
  • научить решать задачи, используя эти зависимости;
  • способствовать развитию умения решать задачи;
  • закрепить навык решения уравнений с помощью пропорции; 
  • повторить действия с обыкновенными и десятичными дробями;
  • развивать логическое мышление учащихся.

ХОД УРОКА

I. Самоопределение к деятельности (организационный момент)

– Ребята! Сегодня на уроке мы познакомимся с задачами, решаемыми с помощью пропорции.

II. Актуализация знаний и фиксация затруднения в деятельности

2.1. Устная работа (3 мин)

– Найдите значение выражений и узнайте слово, зашифрованное в ответах.

14 – с;            0,1 – и;     7 – л;            0,2 – а;           17 – в;           25 – к

– Получилось слово – сила. Молодцы!
– Девиз нашего урока сегодня: Сила – в знаниях! Я ищу –  значит учусь!
– Составьте пропорцию из получившихся чисел. (14 : 7 = 0,2 : 0,1 и т.д.)

2.2. Рассмотрим зависимость  между известными нам величинами (7 мин)

– путем, пройденным автомашиной с постоянной скоростью, и временем ее движения: S = v ·t  (с увеличением скорости (времени) увеличивается путь);
– скоростью автомашины и  затраченным на путь временем: v = S : t (с увеличением времени на прохождение пути, скорость уменьшается);
стоимостью товара, купленного по одной цене и его количеством: С = а · n (с увеличением (уменьшением) цены, увеличивается (уменьшается) стоимость покупки);
– цены товара и его количеством:  а = С : n (с увеличением количества, уменьшается цена)
– площади прямоугольника и его длины (ширины): S = a · b (с увеличением длины(ширины) увеличивается площадь;
– длины прямоугольника и ширины: a = S : b (с увеличением длины уменьшается ширина;
– числом рабочих, выполняющих с одинаковой производительностью труда некоторую работу, и временем выполнения этой работы:  t  = А :  n (с увеличением  числа рабочих время, затраченное на выполнение работы уменьшается) и т.д.

Мы получили зависимости, в которых с увеличением одной величины в несколько раз, тут же во столько же раз увеличивается другая (примеры показать стрелками) и зависимости, в которых с увеличением одной величины в несколько раз, вторая величина уменьшается  в это  же количество  раз.
Такие зависимости называются прямыми и обратными пропорциональностями.
Прямо-пропорциональная зависимость – зависимость, в которой с увеличением (уменьшением) одной величины в несколько раз, увеличивается (уменьшается) вторая величина во столько же раз.
Обратно-пропорциональная зависимость – зависимость, в которой с увеличением (уменьшением) одной величины в несколько раз, уменьшается (увеличивается) вторая величина во столько же раз.

III. Постановка учебной задачи

– Какая проблема встала перед нами? (Научиться различать прямые и обратные зависимости)
–  Это – цель нашего урока. А теперь сформулируйте тему урока. (Прямая и обратная пропорциональная зависимость).
– Молодцы! Запишите тему урока в тетрадях. (Учитель записывает тему на доске.)

IV. «Открытие» нового знания  (10 мин)

Разберем задачи № 199.

1. Принтер распечатывает 27 страниц за 4,5 мин. За сколько времени он распечатает 300 страниц?

27 стр. – 4,5 мин.
300 стр. – х?

2. В коробке 48 пачек чая по 250 г в каждой. Сколько получится из этого чая пачек по 150г?

48 пачек – 250 г.
х ?          –   150 г.

3. Автомобиль проехал 310 км, истратив 25 л бензина. Какое расстояние может проехать автомобиль на полном баке, вмещающем 40л?

310 км – 25 л
х?          –  40 л

4. На одной из сцепляющих шестерен 32 зубца, а на другой – 40. Сколько оборотов сделает вторая шестерня, в то время как первая сделает 215 оборотов?

32 зубца – 315 об.
40 зубцов – х?

Для составления пропорции необходимо одно направление стрелок, для этого в обратной пропорциональности одно отношение заменяют обратным.

У доски ученики находят значение величин, на местах учащиеся решают одну на выбор задачу.

– Сформулируйте правило решения задач с прямой и обратной пропорциональной зависимостью.

На доске появляется таблица:

Алгоритм решения задач с помощью пропорций:

  1. Неизвестное число обозначается буквой х.
  2. Условие задачи записывается в виде таблицы.
  3. Устанавливается вид зависимости между величинами.
  4. Прямо пропорциональная зависимость обозначается одинаково направленными стрелками, а обратно пропорциональная зависимость – противоположно направленными стрелками.
  5. Записывается пропорция.
  6. Находится ее неизвестный член.

V. Первичное закрепление во внешней речи (10 мин)

Задания на листах:

  1. Из 21 кг хлопкового семени получили 5,1 кг масла. Сколько масла получится из 7 кг хлопкового семени?
  2. Для строительства стадиона 5 бульдозеров расчистили площадку за 210 мин. За какое время 7 бульдозеров расчистили бы эту площадку?

VI. Самостоятельная работа с самопроверкой по эталону (5 мин)

Два ученика выполняют задания № 225   самостоятельно на скрытых досках, а остальные  – в тетрадях. Затем они проверяют работу по алгоритму и сопоставляют с решением на доске. Ошибки исправляются, выясняются их причины. Если задание выполнено, верно, то рядом ученики ставят себе знак «+».
Учащиеся, допустившие ошибки в самостоятельной работе       могут использовать консультантов.

VII. Включение в систему знаний и повторение № 271, № 270.

Шесть  человек работают у доски. Через 3–4 минуты учащиеся, работавшие у доски, представляют свои решения, а остальные – проверяют задания и участвуют в их обсуждении.

VIII. Рефлексия деятельности (итог урока)

– Что нового вы узнали на уроке?
– Что повторили?
–  Каков алгоритм решения задач на пропорцию?
– Мы достигли поставленной цели?
– Как оцениваете свою работу?

IX. Домашнее задание

П. 2.4.4.  № 204,  № 207,  № 209.