Урок геометрии в 8-м классе "Касательная к окружности"

Разделы: Математика


Цели:

  • ввести понятие касательной, точки касания,
  • рассмотреть свойство касательной и её признак и показать их применение при решении задач в природе и технике.

Задачи урока:

Образовательные:

  1. Обеспечить овладение основными алгоритмическими приёмами построения касательной к окружности,
  2. Сформировать умения применять теоретические знания к решению задач.

Воспитательные:

  1. Развивать мышление и речь учащихся,
  2. Работать над формированием умений наблюдать, подмечать закономерности, обобщать, проводить рассуждения по аналогии,
  3. Привитие интереса к математике.

Практические: сформировать умение строить касательную к окружности, рассмотреть примеры в природе и технике.

Тип урока: комбинированный.

Оборудование:

  • Карточки с заданиями,
  • Циркуль, треугольник, линейка
  • Мультимедийный проектор, слайды,
  • Модель “Дуб и кот”, маркер.

Оформление кабинета:

  • Рисунки детей “У лукоморья дуб зелёный…”
  • Плакат с высказыванием Козьмы Пруткова

“Наука изощряет ум; ученье вострит память”

Ход урока

I. Организационный момент. (1мин.)

Постановка целей урока.

Ребята этот урок мы посвятим изучению свойства касательной к окружности, научимся строить её. Рассмотрим применение касательной для построения кривых.

II. Повторение изученного материала. (4минут)

1) У каждого ученика карточка с копиркой.

Приложение №1.

Учащиеся сдают листочки с ответами.

Учитель зачитывает предложение полностью, ученик у которого ответ неверный ставит “минус”, верный – “плюс”.

III. Подготовка к восприятию нового материала. (5минут)

В тетради начертить окружность произвольного радиуса с центром в точке О, провести три прямые, так чтобы получилось разное количество общих точек у прямой и окружности.

Один ученик выполняет задание у доски.

Обозначим прямые и полученные точки:

a,b,c и С,В,H.

Повторить

d<r 2 общие точки

d>r нет общих точек

d=r 1 общая точка

IV. Объяснение нового материала. (7минут)

На этом уроке мы рассмотрим свойства окружности и прямой c.

1. Работа с учебником.

На страница 159 найти и прочитать определение касательной к окружности.

Определение. Прямая, имеющая с окружностью только одну общую точку, называется касательной к окружности, а их общая точка называется точкой касания прямой и окружности.

Назвать на рисунке точку касания и прямую касательную к окружности.

(C- точка касания, прямая с – касательная к окружности)

Какими же свойствами обладает эта прямая? Чтобы ответить на этот вопрос -

проведите отрезок соединяющий центр окружности и точку касания, измерьте получившийся угол. (90)

- Что можно сказать о касательной и радиусе? - Они перпендикулярны.

2. Прочтите теорему.

Касательная к окружности перпендикулярна к радиусу, проведённому в точку касания.

Доказательство разбирается в ходе беседы.

Учащиеся делают новый чертёж.

Допустим, что прямая р не перпендикулярна к радиусу ОА(На рисунке сделать построение другим цветом). Сравните расстояние от центра окружности до прямой р с радиусом окружности.

Назовите перпендикуляр к прямой р ОВ

Наклонную ОА

-Расстояние от точки О до прямой р , это ОВ, меньше радиуса окружности ОА, который в данном случае будет являться наклонной по отношению к прямой р, а расстояние от точки О до прямой р – перпендикуляр, а, как известно, любая наклонная больше перпендикуляра, проведённого из той же точки к той же прямой, т. е. ОВ<ОА.

- Сколько тогда общих точек у прямой р и окружности? (2)

- Может ли прямая р быть касательной к окружности? Почему?

Т. к. прямая р имеет две общие точки с окружностью, то она не может бать касательной по определению.

- Верно ли предположение, что прямая р не перпендикулярна радиусу окружности? О чём это говорит?

Предположение не верно, следовательно прямая р перпендикулярна радиусу ОА.

3. Теперь запишем это доказательство в тетради.

Слайд с доказательством. Приложение №2. Слайд 1.

Дано: окр. (О;r=ОА), р-касательная

A к окружности, А-точка касания.

Доказать: рОА.

Доказательство:

Предположим, что рОА, тогда ОА наклонная к прямой р, а ОВр, т. к. ОВ<ОА, то расстояние от центра окружности О до прямой р меньше радиуса, следовательно прямая р и окружность имеют две общие точки, что противоречит условию: прямая р – касательная, т. о. р ОА.

V. Закрепление. (4минуты)

 

2. Гимнастика для глаз. (2минуты)

  1. Глубоко вдохните, зажмурив глаза как можно сильнее. Напрягите мышцы шеи, лица, головы. Задержите дыхание на 2-3 секунды, потом быстро выдохните, широко раскрыв на выдохе глаза. Повторить 5 раз.
  2. Закройте глаза, помассируйте надбровные дуги и нижние части глазниц круговыми движениями - от носа к вискам.
  3. Закройте глаза, расслабьте брови. Повращайте глазными яблоками слева направо и справа налево. Повторить 10 раз.
  4. Поставьте большой палец руки на расстоянии 25-30 см. от глаз, смотрите двумя глазами на конец пальца 3-5 секунд, закройте один глаз на 3-5 секунд, затем снова смотрите двумя глазами, закройте другой глаз. Повторить 10 раз.
  5. Положите кончики пальцев на виски, слегка сжав их. 10 раз быстро и легко моргните. Закройте глаза и отдохните, сделав 2-3 глубоких вдоха. Повторить 3 раза.

3. Построение касательной. (4 минуты)

Ученик, подготовленный заранее, объясняет построение касательной к окружности в заданной точке. Учащиеся выполняют построение в тетради.

Дано: окружность, О - центр, А - лежит на окружности.

Построить касательную к окружности в точке А.

Построение:

  1. ОА – прямая.
  2. От точки А отложим ОА=ОА.
  3. Из точек О и О проведём окружности, радиусом большим ОА.
  4. Через точки пересечения окружностей проведём прямую а.

Прямая а будет касательной по определению.

4. Построение эвольвенты. (10 минут)

Ученик читает отрывок из “Руслана и Людмилы”

У Лукоморья дуб зелёный
Златая цепь на дубе том.
И днём и ночью кот учёный
Всё ходит по цепи кругом.

Нам эти строки знакомы с детства, мы никогда не задумывались над тем, какую линию вычерчивает кот.

Как вы думаете, что это за линия? (Чаще всего ученики отвечают – окружность)

Два ученика, выходят к столу, на котором расположен ватман, макет дуба и небольшой котёнок (мягкая игрушка), к которому прикреплен маркер, привязанный к “дубу”.

Один ученик придерживает “дуб”, а второй передвигает игрушку “по цепи кругом”. На ватмане вычерчивается кривая.

Учитель показывает слайды построения эвольвенты. Приложение №2. Слайд 3.

Таким образом для построения этой кривой надо хорошо уметь строить касательную в заданной точке.

Ученикам раздаются карточки на которых написан порядок построения эвольвенты. Приложение №1.

После выполнения построения - лучшие работы оцениваются.

С этой же кривой связана и биология . (2 минуты)

1. Ученик рассказывает о берёзовом долгоносике, демонстрируя разрез листа и сворачивает его.

Приложение №2. Слайды 4 и 5.

2. Ученик рассказывает о практическом применение касательной к окружности.

Ковшовая турбина. Приложение №2. Слайд 6.

КОВШОВАЯ ГИДРОТУРБИНА (ПЕЛТОНА ТУРБИНА)

Гидротурбина, у которой вода (пар) на лопасти (ковши) рабочего колеса поступает через сопла по касательной к окружности, проходящей через середину ковша. Применяют при напорах св. 500 м. Мощность до 110 МВт. Патент на ковшовую гидротурбину в 1889 получил американский инженер А. Пелтон.

VI. Подведение итогов.

Оценки выставляются с учётом диктанта, активности на уроке, за построение эвольвенты. Рефлексия. Приложение №1.

VII. Домашнее задание.

Приложение №1.

П. 69, вопросы 1-4, №634, решить задачи по готовым чертежам, дополнительную задачу.

Литература:

  1. Н. Ф. Гаврилова Поурочные разработки по геометрии 8 класс. Москва “ВАКО”, 2005.
  2. А. Азевич. Кривые мудрого жучка.
  3. Я. И. Перельман. Занимательная алгебра. “Тезис”, Екатеринбург, 1994
  4. С. Акимова. Занимательная математика. Нескучный учебник. Тригон, С-Петербург,1997.