Классификация задач на вписанные в треугольник и описанные около треугольника окружности

Разделы: Математика


Задачи на вписанные в треугольник и описанные около треугольника окружности вызывают даже у сильных учащихся затруднения при их решении. Попытка провести классификацию этих задач по содержанию и методам решения привела к положительным результатам. Учащиеся полюбили этот тип задач. Хотим поделиться нашим опытом.

Содержание

  1. Замечательное открытие: люди изобрели колесо.
  2. Окружность, описанная около треугольника.
  3. Окружность, вписанная в треугольник.
  4. Задачи на вписанные и описанные окружности.

Вавилон

На востоке от Аравийского полуострова с севера на юг текут две большие реки – Евфрат и Тигр. Между ними тянется узкая длинная полоса земли. В древности она называлась Месопотамией, что в переводе означает “ Междуречье’’. Самым известным государством Месопотамии был Вавилон. Земля в Междуречье плодородная, но там не было ни металлов, ни камня, ни леса, чтобы строить дома. Всё это вавилонянам приходилось покупать у других народов. Поэтому Вавилон раньше других стран стал вести большую торговлю. Торговля помогала науке. В математике вавилонские учёные добились больших успехов.

Около шести тысяч лет назад в Вавилоне было сделано замечательное открытие: люди изобрели колесо. Колесо? Что же тут замечательного? Но так кажется только на первый взгляд. Представьте себе на секунду, что вдруг случилось чудо, и на земле исчезли все колёса. Это было бы настоящей катастрофой! Остановятся автомобили и поезда, замрут заводы и фабрики, перестанут давать ток электростанции. Выходит, что неизвестный вавилонский изобретатель первого колеса действительно сделал великое открытие.

Вавилонские инженеры и мастера стали пользоваться блоками. Они поднимали и перетаскивали такие тяжести, справиться с которыми без колеса было бы не под силу. Колесо и рычаг стали первыми настоящими помощниками человека в работе с большими тяжестями.Так изобретение колеса сыграло очень большую роль в истории Вавилона.

Описанные и вписанные окружности

Окружность называется описанной около многоугольника, если все вершины многоугольника лежат в окружности.

Окружность называется вписанной в многоугольник, если все стороны многоугольника касаются окружности.

Теорема. Около любого треугольника можно описать окружность.

Доказательство: Рассмотрим произвольный В треугольник АВС. Обозначим буквой О точку пересечения серединных перпендикуляров к его сторонам и проведём отрезки ОА, ОВ и ОС. Так как точка О равноудалена от вершин треугольника АВС, то ОА=ОВ=ОС. Поэтому окружность с центром О радиуса ОА проходит через О все три вершины треугольника и, значит, является описанной около треугольника АВС.

Вывод: Центр описанной около треугольника окружности лежит А С на пересечении серединных перпендикуляров и расположен:

а) в треугольнике, если он остроугольный;

б) на середине гипотенузы, если он прямоугольный;

в) вне треугольника, если он тупоугольный.

Нахождение радиуса окружности, описанной около треугольника

Рассмотрим задачи на нахождение радиуса описанной около треугольника окружности. (См. Приложение1.)

Вписанные окружности

Окружность называется вписанной в многоугольник, если все стороны многоугольника касаются окружности.

Теорема. В любой треугольник можно вписать окружность.

Доказательство: Рассмотрим произвольный треугольник АВС и обозначим М буквой О точку пересечения его биссектрис. Проведём из точки О перпендикуляры А К В ОК, ОL и ОМ соответственно к сторонам АВ, ВС и СА.

Так как точка О равноудалена A k B от сторон треугольника АВС то ОК = ОL=ОМ. Поэтому окружность с центром О радиуса ОК проходит через точки К, L и М.

Стороны треугольника АВС касаются этой окружности в точках К, L и М, так как они перпендикулярны к радиусам ОК, ОL и ОМ.

Значит, окружность с центром О радиуса ОК является вписанной в треугольник АВС.

Выводы. Центр вписанной в треугольник окружности лежит в точке пересечения биссектрис треугольника. Касательная к окружности (стороны треугольника) перпендикулярна к радиусу, проведённому в точку касания.

Вписанная в треугольник окружность

Рассмотрим задачи на нахождение радиуса вписанной в треугольник окружности.

(См. Приложение 2.)

Задачи на вписанную и описанную окружность. (См. Приложение 3.)